These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35125243)

  • 41. Examining the effect of virtual reality therapy on cognition post-stroke: a systematic review and meta-analysis.
    Wiley E; Khattab S; Tang A
    Disabil Rehabil Assist Technol; 2022 Jan; 17(1):50-60. PubMed ID: 32363955
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Omnidirectional Galvanic Vestibular Stimulation in Virtual Reality.
    Groth C; Tauscher JP; Heesen N; Hattenbach M; Castillo S; Magnor M
    IEEE Trans Vis Comput Graph; 2022 May; 28(5):2234-2244. PubMed ID: 35167472
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Test-retest reliability of the virtual reality sickness evaluation using electroencephalography (EEG).
    Lim HK; Ji K; Woo YS; Han DU; Lee DH; Nam SG; Jang KM
    Neurosci Lett; 2021 Jan; 743():135589. PubMed ID: 33359731
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Virtual reality environment design of managing both presence and virtual reality sickness.
    Tanaka N; Takagi H
    J Physiol Anthropol Appl Human Sci; 2004 Nov; 23(6):313-7. PubMed ID: 15599082
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chewing gum reduces visually induced motion sickness.
    Kaufeld M; De Coninck K; Schmidt J; Hecht H
    Exp Brain Res; 2022 Feb; 240(2):651-663. PubMed ID: 34997261
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of adaptation to visually induced motion sickness based on the maximum cross-correlation between pulse transmission time and heart rate.
    Sugita N; Yoshizawa M; Abe M; Tanaka A; Watanabe T; Chiba S; Yambe T; Nitta S
    J Neuroeng Rehabil; 2007 Sep; 4():35. PubMed ID: 17903249
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel upper-limb tracking system in a virtual environment for stroke rehabilitation.
    Cha K; Wang J; Li Y; Shen L; Chen Z; Long J
    J Neuroeng Rehabil; 2021 Nov; 18(1):166. PubMed ID: 34838086
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A review on ergonomics evaluations of virtual reality.
    Chen Y; Wu Z
    Work; 2023; 74(3):831-841. PubMed ID: 36442175
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reduction of cybersickness during and immediately following noisy galvanic vestibular stimulation.
    Weech S; Wall T; Barnett-Cowan M
    Exp Brain Res; 2020 Feb; 238(2):427-437. PubMed ID: 31938844
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Virtual reality as a countermeasure for astronaut motion sickness during simulated post-flight water landings.
    Lonner TL; Allred AR; Bonarrigo L; Gopinath A; Smith K; Kravets V; Groen EL; Oman C; DiZio P; Lawson BD; Clark TK
    Exp Brain Res; 2023 Dec; 241(11-12):2669-2682. PubMed ID: 37796301
    [TBL] [Abstract][Full Text] [Related]  

  • 51. EEG-based analysis of various sensory stimulation effects to reduce visually induced motion sickness in virtual reality.
    Yeo SS; Kwon JW; Park SY
    Sci Rep; 2022 Oct; 12(1):18043. PubMed ID: 36302810
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Subjective Visual Vertical test with the 3D virtual reality system: effective factors and cybersickness.
    Ardıç FN; Metin U; Gökcan BE
    Acta Otolaryngol; 2023; 143(7):570-575. PubMed ID: 37493360
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Randomized, Controlled, Crossover Trial of Virtual Reality in Maintenance Cardiovascular Rehabilitation in a Low-Resource Setting: Impact on Adherence, Motivation, and Engagement.
    da Cruz MMA; Ricci-Vitor AL; Borges GLB; da Silva PF; Turri-Silva N; Takahashi C; Grace SL; Vanderlei LCM
    Phys Ther; 2021 May; 101(5):. PubMed ID: 33625515
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of unexpected visual motion on postural sway and motion sickness.
    Dennison M; D'Zmura M
    Appl Ergon; 2018 Sep; 71():9-16. PubMed ID: 29764619
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Full-immersion virtual reality: Adverse effects related to static balance.
    Park S; Lee G
    Neurosci Lett; 2020 Aug; 733():134974. PubMed ID: 32294492
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Proof-of-Concept of the Virtual Reality Comprehensive Balance Assessment and Training for Sensory Organization of Dynamic Postural Control.
    Moon S; Huang CK; Sadeghi M; Akinwuntan AE; Devos H
    Front Bioeng Biotechnol; 2021; 9():678006. PubMed ID: 34395396
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A knowledge translation intervention to enhance clinical application of a virtual reality system in stroke rehabilitation.
    Levac D; Glegg SM; Sveistrup H; Colquhoun H; Miller PA; Finestone H; DePaul V; Harris JE; Velikonja D
    BMC Health Serv Res; 2016 Oct; 16(1):557. PubMed ID: 27716179
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Virtual reality body motion induced navigational controllers and their effects on simulator sickness and pathfinding.
    Aldaba CN; White PJ; Byagowi A; Moussavi Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4175-4178. PubMed ID: 29060817
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of Visually Induced Motion Sickness from Head-Mounted Display on Cardiac Activity.
    Park S; Ha J; Kim L
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015973
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Deep Motion Sickness Predictor Induced by Visual Stimuli in Virtual Reality.
    Kim J; Oh H; Kim W; Choi S; Son W; Lee S
    IEEE Trans Neural Netw Learn Syst; 2022 Feb; 33(2):554-566. PubMed ID: 33079678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.