BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 3512547)

  • 21. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase.
    Wales ME; Madison LL; Glaser SS; Wild JR
    J Mol Biol; 1999 Dec; 294(5):1387-400. PubMed ID: 10600393
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A 70-amino acid zinc-binding polypeptide from the regulatory chain of aspartate transcarbamoylase forms a stable complex with the catalytic subunit leading to markedly altered enzyme activity.
    Markby DW; Zhou BB; Schachman HK
    Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10568-72. PubMed ID: 1961722
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Properties of hybrid aspartate transcarbamoylase formed with native subunits from divergent bacteria.
    Shanley MS; Foltermann KF; O'Donovan GA; Wild JR
    J Biol Chem; 1984 Oct; 259(20):12672-7. PubMed ID: 6386799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Communication between catalytic and regulatory subunits in Ni(II)- and Co(II)-aspartate transcarbamoylase. Ligand-promoted structural alterations at the intersubunit bonding domains.
    Johnson RS; Schachman HK
    J Biol Chem; 1983 Mar; 258(6):3528-38. PubMed ID: 6833212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Weakening of the interface between adjacent catalytic chains promotes domain closure in Escherichia coli aspartate transcarbamoylase.
    Baker DP; Fetler L; Keiser RT; Vachette P; Kantrowitz ER
    Protein Sci; 1995 Feb; 4(2):258-67. PubMed ID: 7757014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in the hydrogen exchange kinetics of Escherichia coli aspartate transcarbamylase produced by effector binding and subunit association.
    Lennick M; Allewell NM
    Proc Natl Acad Sci U S A; 1981 Nov; 78(11):6759-63. PubMed ID: 7031660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of intersubunit interactions for the stabilization of the T state of Escherichia coli aspartate transcarbamoylase.
    Chan RS; Sakash JB; Macol CP; West JM; Tsuruta H; Kantrowitz ER
    J Biol Chem; 2002 Dec; 277(51):49755-60. PubMed ID: 12399459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aspartate transcarbamoylase: loss of homotropic but not heterotropic interactions upon modification of the catalytic subunit with a bifunctional reagent.
    Chan WW; Enns CA
    Can J Biochem; 1979 Jun; 57(6):798-805. PubMed ID: 383237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Replacement of Asp-162 by Ala prevents the cooperative transition by the substrates while enhancing the effect of the allosteric activator ATP on E. coli aspartate transcarbamoylase.
    Fetler L; Tauc P; Baker DP; Macol CP; Kantrowitz ER; Vachette P
    Protein Sci; 2002 May; 11(5):1074-81. PubMed ID: 11967364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functionally important arginine residues of aspartate transcarbamylase.
    Kantrowitz ER; Lipscomb WN
    J Biol Chem; 1977 May; 252(9):2873-80. PubMed ID: 323257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effectors of Escherichia coli aspartate transcarbamoylase differentially perturb aspartate binding rather than the T-R transition.
    Hsuanyu YC; Wedler FC
    J Biol Chem; 1988 Mar; 263(9):4172-81. PubMed ID: 3279030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On conformational changes in the regulatory enzyme aspartate transcarbamoylase.
    Cohen RE; Foote J; Schachman HK
    Curr Top Cell Regul; 1985; 26():177-90. PubMed ID: 3907993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Importance of residues Arg-167 and Gln-231 in both the allosteric and catalytic mechanisms of Escherichia coli aspartate transcarbamoylase.
    Stebbins JW; Zhang Y; Kantrowitz ER
    Biochemistry; 1990 Apr; 29(16):3821-7. PubMed ID: 2191720
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reconstitution of active catalytic trimer of aspartate transcarbamoylase from proteolytically cleaved polypeptide chains.
    Powers VM; Yang YR; Fogli MJ; Schachman HK
    Protein Sci; 1993 Jun; 2(6):1001-12. PubMed ID: 8318885
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ligand-promoted weakening of intersubunit bonding domains in aspartate transcarbamolylase.
    Subramani S; Bothwell MA; Gibbons I; Yang YR; Schachman HK
    Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3777-81. PubMed ID: 333446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in stability and allosteric properties of aspartate transcarbamoylase resulting from amino acid substitutions in the zinc-binding domain of the regulatory chains.
    Eisenstein E; Markby DW; Schachman HK
    Proc Natl Acad Sci U S A; 1989 May; 86(9):3094-8. PubMed ID: 2566165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hybrid aspartate transcarbamoylase containing cross-linked subunits.
    Chan WW; Enns CA
    Can J Biochem; 1981 Jun; 59(6):461-8. PubMed ID: 7028218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tryptophan residues at subunit interfaces used as fluorescence probes to investigate homotropic and heterotropic regulation of aspartate transcarbamylase.
    Fetler L; Tauc P; Hervé G; Cunin R; Brochon JC
    Biochemistry; 2001 Jul; 40(30):8773-82. PubMed ID: 11467937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights into the mechanisms of catalysis and heterotropic regulation of Escherichia coli aspartate transcarbamoylase based upon a structure of the enzyme complexed with the bisubstrate analogue N-phosphonacetyl-L-aspartate at 2.1 A.
    Jin L; Stec B; Lipscomb WN; Kantrowitz ER
    Proteins; 1999 Dec; 37(4):729-42. PubMed ID: 10651286
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cooperative interactions in aspartate transcarbamoylase. 1. Hybrids composed of native and chemically inactivated catalytic polypeptide chains.
    Gibbons I; Yang YR; Schachman HK
    Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4452-6. PubMed ID: 4612521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.