These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 35125515)
1. Identification of SARS-CoV-2 surface therapeutic targets and drugs using molecular modeling methods for inhibition of the virus entry. Farhadian S; Heidari-Soureshjani E; Hashemi-Shahraki F; Hasanpour-Dehkordi A; Uversky VN; Shirani M; Shareghi B; Sadeghi M; Pirali E; Hadi-Alijanvand S J Mol Struct; 2022 May; 1256():132488. PubMed ID: 35125515 [TBL] [Abstract][Full Text] [Related]
2. Design of Potent Membrane Fusion Inhibitors against SARS-CoV-2, an Emerging Coronavirus with High Fusogenic Activity. Zhu Y; Yu D; Yan H; Chong H; He Y J Virol; 2020 Jul; 94(14):. PubMed ID: 32376627 [TBL] [Abstract][Full Text] [Related]
3. In silico design of antiviral peptides targeting the spike protein of SARS-CoV-2. Ling R; Dai Y; Huang B; Huang W; Yu J; Lu X; Jiang Y Peptides; 2020 Aug; 130():170328. PubMed ID: 32380200 [TBL] [Abstract][Full Text] [Related]
4. Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Liu S; Xiao G; Chen Y; He Y; Niu J; Escalante CR; Xiong H; Farmar J; Debnath AK; Tien P; Jiang S Lancet; 2004 Mar; 363(9413):938-47. PubMed ID: 15043961 [TBL] [Abstract][Full Text] [Related]
5. Exploring Highly Conserved Regions of SARS-CoV-2 Spike S2 Subunit as Targets for Fusion Inhibition Using Chimeric Proteins. Polo-Megías D; Cano-Muñoz M; Berruezo AG; Laumond G; Moog C; Conejero-Lara F Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555153 [TBL] [Abstract][Full Text] [Related]
7. [Salvianolic acid B and its magnesium salt inhibit SARS-CoV-2 infection of Vero-E6 cells by blocking spike protein-mediated membrane fusion]. Yang C; Cheng C; Wang J; Chen K; Zhan J; Pan X; Xu X; Xu W; Liu S Nan Fang Yi Ke Da Xue Xue Bao; 2021 Apr; 41(4):475-482. PubMed ID: 33963705 [TBL] [Abstract][Full Text] [Related]
8. Virtual screening and molecular dynamics study of approved drugs as inhibitors of spike protein S1 domain and ACE2 interaction in SARS-CoV-2. Prajapat M; Shekhar N; Sarma P; Avti P; Singh S; Kaur H; Bhattacharyya A; Kumar S; Sharma S; Prakash A; Medhi B J Mol Graph Model; 2020 Dec; 101():107716. PubMed ID: 32866780 [TBL] [Abstract][Full Text] [Related]
9. Kaempferol inhibits SARS-CoV-2 invasion by impairing heptad repeats-mediated viral fusion. Gao J; Cao C; Shi M; Hong S; Guo S; Li J; Liang T; Song P; Xu R; Li N Phytomedicine; 2023 Sep; 118():154942. PubMed ID: 37421767 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Xia S; Liu M; Wang C; Xu W; Lan Q; Feng S; Qi F; Bao L; Du L; Liu S; Qin C; Sun F; Shi Z; Zhu Y; Jiang S; Lu L Cell Res; 2020 Apr; 30(4):343-355. PubMed ID: 32231345 [TBL] [Abstract][Full Text] [Related]
11. Computational repurposing approach for targeting the critical spike mutations in B.1.617.2 (delta), AY.1 (delta plus) and C.37 (lambda) SARS-CoV-2 variants using exhaustive structure-based virtual screening, molecular dynamic simulations and MM-PBSA methods. Ebrahimi M; Karami L; Alijanianzadeh M Comput Biol Med; 2022 Aug; 147():105709. PubMed ID: 35728285 [TBL] [Abstract][Full Text] [Related]
12. Identification of SARS-CoV-2 Cell Entry Inhibitors by Drug Repurposing Using Choudhary S; Malik YS; Tomar S Front Immunol; 2020; 11():1664. PubMed ID: 32754161 [TBL] [Abstract][Full Text] [Related]
13. Nanomolar inhibition of SARS-CoV-2 infection by an unmodified peptide targeting the pre-hairpin intermediate of the spike protein. Yang K; Wang C; Kreutzberger AJB; Ojha R; Kuivanen S; Couoh-Cardel S; Muratcioglu S; Eisen TJ; White KI; Held RG; Subramanian S; Marcus K; Pfuetzner RA; Esquivies L; Doyle CA; Kuriyan J; Vapalahti O; Balistreri G; Kirchhausen T; Brunger AT bioRxiv; 2022 Aug; ():. PubMed ID: 35982670 [TBL] [Abstract][Full Text] [Related]
14. Metalloproteinase-Dependent and TMPRSS2-Independent Cell Surface Entry Pathway of SARS-CoV-2 Requires the Furin Cleavage Site and the S2 Domain of Spike Protein. Yamamoto M; Gohda J; Kobayashi A; Tomita K; Hirayama Y; Koshikawa N; Seiki M; Semba K; Akiyama T; Kawaguchi Y; Inoue JI mBio; 2022 Aug; 13(4):e0051922. PubMed ID: 35708281 [TBL] [Abstract][Full Text] [Related]
15. Exploring the efficacy of naturally occurring biflavone based antioxidants towards the inhibition of the SARS-CoV-2 spike glycoprotein mediated membrane fusion. Mondal S; Karmakar A; Mallick T; Begum NA Virology; 2021 Apr; 556():133-139. PubMed ID: 33571798 [TBL] [Abstract][Full Text] [Related]
16. Structural Basis for the Understanding of Entry Inhibitors against SARS Viruses. Kushwaha PK; Kumari N; Nayak S; Kishor K; Sharon A Curr Med Chem; 2022; 29(4):666-681. PubMed ID: 33992054 [TBL] [Abstract][Full Text] [Related]
17. Novel Engineered SARS-CoV-2 HR1 Trimer Exhibits Improved Potency and Broad-Spectrum Activity against SARS-CoV-2 and Its Variants. Bi W; Chen G; Dang B J Virol; 2022 Jul; 96(13):e0068122. PubMed ID: 35735997 [TBL] [Abstract][Full Text] [Related]
18. An engineered 5-helix bundle derived from SARS-CoV-2 S2 pre-binds sarbecoviral spike at both serological- and endosomal-pH to inhibit virus entry. Lin X; Guo L; Lin S; Chen Z; Yang F; Yang J; Wang L; Wen A; Duan Y; Zhang X; Dai Y; Yin K; Yuan X; Yu C; He B; Cao Y; Dong H; Li J; Zhao Q; Lu G Emerg Microbes Infect; 2022 Dec; 11(1):1920-1935. PubMed ID: 35757908 [TBL] [Abstract][Full Text] [Related]