These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 3512563)

  • 41. The Bacillus megaterium ribonucleotide reductase: evidence for a B 12 coenzyme requirement.
    Yau S; Wachsman JT
    Mol Cell Biochem; 1973 May; 1(1):101-5. PubMed ID: 4214997
    [No Abstract]   [Full Text] [Related]  

  • 42. Preparative 2'-reduction of ATP catalyzed by ribonucleotide reductase purified by liquid-liquid extraction.
    Brunella A; Abrantes M; Ghisalba O
    Biosci Biotechnol Biochem; 2000 Sep; 64(9):1836-41. PubMed ID: 11055385
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Allosteric control of three B12-dependent (class II) ribonucleotide reductases. Implications for the evolution of ribonucleotide reduction.
    Eliasson R; Pontis E; Jordan A; Reichard P
    J Biol Chem; 1999 Mar; 274(11):7182-9. PubMed ID: 10066778
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Solution structure, enzymatic, and non-enzymatic reactivity of 3-isoadenosylcobalamin, a structural isomer of coenzyme B12 with surprising coenzymic activity.
    Brown KL; Zou X; Chen G; Xia Z; Marques HM
    J Inorg Biochem; 2004 Feb; 98(2):287-300. PubMed ID: 14729309
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Allosterism, regulation and cooperativity: the case of ribonucleotide reductase of Lactobacillus leichmannii.
    Singh D; Tamao Y; Blakley RL
    Adv Enzyme Regul; 1976; 15():81-100. PubMed ID: 1030188
    [No Abstract]   [Full Text] [Related]  

  • 46. Structural and enzymatic studies of a new analogue of coenzyme B12 with an alpha-adenosyl upper axial ligand.
    Brown KL; Cheng S; Zou X; Li J; Chen G; Valente EJ; Zubkowski JD; Marques HM
    Biochemistry; 1998 Jul; 37(27):9704-15. PubMed ID: 9657683
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [The aeration-dependent effect of vitamin B12 on DNA biosynthesis in Methylobacterium dichloromethanicum].
    Danilova IV; Doronina NV; Trotsenko IuA; Netrusov AI; Ryzhkova EP
    Mikrobiologiia; 2004; 73(2):169-74. PubMed ID: 15198026
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The crystal structure of class II ribonucleotide reductase reveals how an allosterically regulated monomer mimics a dimer.
    Sintchak MD; Arjara G; Kellogg BA; Stubbe J; Drennan CL
    Nat Struct Biol; 2002 Apr; 9(4):293-300. PubMed ID: 11875520
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Allosteric regulation of the class III anaerobic ribonucleotide reductase from bacteriophage T4.
    Andersson J; Westman M; Hofer A; Sjoberg BM
    J Biol Chem; 2000 Jun; 275(26):19443-8. PubMed ID: 10748029
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ribonucleoside triphosphate reductase from Lactobacillus leichmannii.
    Blakley RL
    Methods Enzymol; 1978; 51():246-59. PubMed ID: 692388
    [No Abstract]   [Full Text] [Related]  

  • 51. On the mechanism of ribonucleoside diphosphate reductase from Escherichia coli. Evidence for 3'-C--H bond cleavage.
    Stubbe J; Ackles D
    J Biol Chem; 1980 Sep; 255(17):8027-30. PubMed ID: 6997288
    [TBL] [Abstract][Full Text] [Related]  

  • 52. From RNA to DNA, why so many ribonucleotide reductases?
    Reichard P
    Science; 1993 Jun; 260(5115):1773-7. PubMed ID: 8511586
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The purification and characterization of an adenosylcobalamin-dependent ribonucleoside diphosphate reductase from Corynebacterium nephridii.
    Tsai PK; Hogenkamp HP
    J Biol Chem; 1980 Feb; 255(4):1273-8. PubMed ID: 6986368
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lactobacillus leichmannii and Escherichia coli ribonucleotide reductases: chemical and structural similarities.
    Lin AI; Ashley GW; Stubbe J
    Cold Spring Harb Symp Quant Biol; 1987; 52():587-96. PubMed ID: 3331345
    [No Abstract]   [Full Text] [Related]  

  • 55. Interaction of C225SR1 mutant subunit of ribonucleotide reductase with R2 and nucleoside diphosphates: tales of a suicidal enzyme.
    Mao SS; Holler TP; Bollinger JM; Yu GX; Johnston MI; Stubbe J
    Biochemistry; 1992 Oct; 31(40):9744-51. PubMed ID: 1390750
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inactivation of the Lactobacillus leichmannii ribonucleoside triphosphate reductase by 2'-chloro-2'-deoxyuridine 5'-triphosphate: stoichiometry of inactivation, site of inactivation, and mechanism of the protein chromophore formation.
    Ashley GW; Harris G; Stubbe J
    Biochemistry; 1988 Jun; 27(12):4305-10. PubMed ID: 3048383
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nucleotide and thioredoxin specificity of the manganese ribonucleotide reductase from Brevibacterium ammoniagenes.
    Willing A; Follmann H; Auling G
    Eur J Biochem; 1988 Jul; 175(1):167-73. PubMed ID: 3042394
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microbiological activities of nucleotide loop-modified analogues of vitamin B12.
    Ishida A; Kanefusa H; Fujita H; Toraya T
    Arch Microbiol; 1994; 161(4):293-9. PubMed ID: 8002712
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ribonucleotide reductases: radical enzymes with suicidal tendencies.
    Booker S; Broderick J; Stubbe J
    Biochem Soc Trans; 1993 Aug; 21 ( Pt 3)(3):727-30. PubMed ID: 8224499
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A rotary mechanism for coenzyme B(12) synthesis by adenosyltransferase.
    Padovani D; Banerjee R
    Biochemistry; 2009 Jun; 48(23):5350-7. PubMed ID: 19413290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.