These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 35126033)
1. A Flexible Pulse Generator Based on a Field Programmable Gate Array Architecture for Functional Electrical Stimulation. Mercado-Gutierrez JA; Dominguez R; Hernandez-Popo I; Quinzaños-Fresnedo J; Vera-Hernandez A; Leija-Salas L; Gutierrez-Martinez J Front Neurosci; 2021; 15():702781. PubMed ID: 35126033 [TBL] [Abstract][Full Text] [Related]
2. Design of an FPGA-Based Fuzzy Feedback Controller for Closed-Loop FES in Knee Joint Model. Noorsal E; Arof S; Yahaya SZ; Hussain Z; Kho D; Mohd Ali Y Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442590 [TBL] [Abstract][Full Text] [Related]
3. The effective stimulating pulse for restoration of blink function in unilateral facial nerve paralysis rabbits, verified by a simple FES system. Jie T; Zhiqiang G; Guodong F; Yubin X; Xiuyong D; Tingting C; Yang Z Eur Arch Otorhinolaryngol; 2016 Oct; 273(10):2959-64. PubMed ID: 26742906 [TBL] [Abstract][Full Text] [Related]
4. Synergy-Based FES for Post-Stroke Rehabilitation of Upper-Limb Motor Functions. Niu CM; Bao Y; Zhuang C; Li S; Wang T; Cui L; Xie Q; Lan N IEEE Trans Neural Syst Rehabil Eng; 2019 Feb; 27(2):256-264. PubMed ID: 30763238 [TBL] [Abstract][Full Text] [Related]
5. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Daly JJ; Ruff RL ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618 [TBL] [Abstract][Full Text] [Related]
6. Neurorehabilitation with new functional electrical stimulation for hemiparetic upper extremity in stroke patients. Hara Y J Nippon Med Sch; 2008 Feb; 75(1):4-14. PubMed ID: 18360073 [TBL] [Abstract][Full Text] [Related]
7. A neural tracking and motor control approach to improve rehabilitation of upper limb movements. Goffredo M; Bernabucci I; Schmid M; Conforto S J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996 [TBL] [Abstract][Full Text] [Related]
8. An Exploratory Investigation on the Use of Closed-Loop Electrical Stimulation to Assist Individuals with Stroke to Perform Fine Movements with Their Hemiparetic Arm. Lew B; Alavi N; Randhawa BK; Menon C Front Bioeng Biotechnol; 2016; 4():20. PubMed ID: 27014683 [TBL] [Abstract][Full Text] [Related]
9. Development of a High-Power Capacity Open Source Electrical Stimulation System to Enhance Research into FES-Assisted Devices: Validation of FES Cycling. Coelho-Magalhães T; Fachin-Martins E; Silva A; Azevedo Coste C; Resende-Martins H Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062492 [TBL] [Abstract][Full Text] [Related]
10. Hybrid Cooperative Control of Functional Electrical Stimulation and Robot Assistance for Upper Extremity Rehabilitation. Dalla Gasperina S; Ferrari F; Gandolla M; Pedrocchi A; Ambrosini E IEEE Trans Biomed Eng; 2024 Sep; 71(9):2642-2650. PubMed ID: 39167498 [TBL] [Abstract][Full Text] [Related]
11. Design of FPGA-Based SHE and SPWM Digital Switching Controllers for 21-Level Cascaded H-Bridge Multilevel Inverter Model. Noorsal E; Rongi A; Ibrahim IR; Darus R; Kho D; Setumin S Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208304 [TBL] [Abstract][Full Text] [Related]
12. The application of precisely controlled functional electrical stimulation to the shoulder, elbow and wrist for upper limb stroke rehabilitation: a feasibility study. Meadmore KL; Exell TA; Hallewell E; Hughes AM; Freeman CT; Kutlu M; Benson V; Rogers E; Burridge JH J Neuroeng Rehabil; 2014 Jun; 11():105. PubMed ID: 24981060 [TBL] [Abstract][Full Text] [Related]
13. A Generic Sequential Stimulation Adapter for Reducing Muscle Fatigue during Functional Electrical Stimulation. Ye G; Ali SS; Bergquist AJ; Popovic MR; Masani K Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770555 [TBL] [Abstract][Full Text] [Related]
14. Effectiveness of upper limb functional electrical stimulation after stroke for the improvement of activities of daily living and motor function: a systematic review and meta-analysis. Eraifej J; Clark W; France B; Desando S; Moore D Syst Rev; 2017 Feb; 6(1):40. PubMed ID: 28245858 [TBL] [Abstract][Full Text] [Related]
15. Personalized protocol and scoring scale for functional electrical stimulation of the hand: A pilot feasibility study. Camacho-Zavala JK; Perez-Medina AL; Mercado-Gutierrez JA; Gutierrez MI; Gutierrez-Martinez J; Aguirre-Güemez AV; Quinzaños-Fresnedo J; Perez-Orive J Technol Health Care; 2022; 30(1):51-63. PubMed ID: 34397438 [TBL] [Abstract][Full Text] [Related]
16. A Co-driven Functional Electrical Stimulation Control Strategy by Dynamic Surface Electromyography and Joint Angle. Xu R; Zhao X; Wang Z; Zhang H; Meng L; Ming D Front Neurosci; 2022; 16():909602. PubMed ID: 35898409 [TBL] [Abstract][Full Text] [Related]
18. Ultra-narrow pulse generator with precision-adjustable pulse width. Fu Z; Liu H Rev Sci Instrum; 2018 May; 89(5):055103. PubMed ID: 29864854 [TBL] [Abstract][Full Text] [Related]
19. Relation Between the Frequency of Short-Pulse Electrical Stimulation of Afferent Nerve Fibers and Evoked Muscle Force. Dideriksen J; Leerskov K; Czyzewska M; Rasmussen R IEEE Trans Biomed Eng; 2017 Nov; 64(11):2737-2745. PubMed ID: 28237919 [No Abstract] [Full Text] [Related]
20. Control of Functional Electrical Stimulation Systems Using Simultaneous Pulse Width, Amplitude, and Frequency Modulations. Nekoukar V Neuromodulation; 2021 Dec; 24(8):1467-1474. PubMed ID: 32084306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]