BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 35126061)

  • 1. Type II Opsins in the Eye, the Pineal Complex and the Skin of
    Bertolesi GE; Debnath N; Malik HR; Man LLH; McFarlane S
    Front Neuroanat; 2021; 15():784478. PubMed ID: 35126061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The regulation of skin pigmentation in response to environmental light by pineal Type II opsins and skin melanophore melatonin receptors.
    Bertolesi GE; Atkinson-Leadbeater K; Mackey EM; Song YN; Heyne B; McFarlane S
    J Photochem Photobiol B; 2020 Nov; 212():112024. PubMed ID: 32957069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction and developmental activation of two neuroendocrine systems that regulate light-mediated skin pigmentation.
    Bertolesi GE; Song YN; Atkinson-Leadbeater K; Yang JJ; McFarlane S
    Pigment Cell Melanoma Res; 2017 Jul; 30(4):413-423. PubMed ID: 28371026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seeing the light to change colour: An evolutionary perspective on the role of melanopsin in neuroendocrine circuits regulating light-mediated skin pigmentation.
    Bertolesi GE; McFarlane S
    Pigment Cell Melanoma Res; 2018 May; 31(3):354-373. PubMed ID: 29239123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melanopsin photoreception in the eye regulates light-induced skin colour changes through the production of α-MSH in the pituitary gland.
    Bertolesi GE; Hehr CL; McFarlane S
    Pigment Cell Melanoma Res; 2015 Sep; 28(5):559-71. PubMed ID: 26095528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two light-activated neuroendocrine circuits arising in the eye trigger physiological and morphological pigmentation.
    Bertolesi GE; Hehr CL; Munn H; McFarlane S
    Pigment Cell Melanoma Res; 2016 Nov; 29(6):688-701. PubMed ID: 27557040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ontogenetic development of S-antigen- and rod-opsin immunoreactions in retinal and pineal photoreceptors of Xenopus laevis in relation to the onset of melatonin-dependent color-change mechanisms.
    Korf B; Rollag MD; Korf HW
    Cell Tissue Res; 1989 Nov; 258(2):319-29. PubMed ID: 2531037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological induction of skin pigmentation unveils the neuroendocrine circuit regulated by light.
    Bertolesi GE; Vazhappilly ST; Hehr CL; McFarlane S
    Pigment Cell Melanoma Res; 2016 Mar; 29(2):186-98. PubMed ID: 26582755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of melanopsins and Per1 by α -MSH and melatonin in photosensitive Xenopus laevis melanophores.
    Moraes MN; dos Santos LR; Mezzalira N; Poletini MO; Castrucci AM
    Biomed Res Int; 2014; 2014():654710. PubMed ID: 24959583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelin modulates the circadian expression of non-visual opsins.
    Moraes MN; Lima LH; Ramos BC; Poletini Mde O; Castrucci AM
    Gen Comp Endocrinol; 2014 Sep; 205():279-86. PubMed ID: 24816266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative aspects of the pineal/melatonin system of poikilothermic vertebrates.
    Filadelfi AM; Castrucci AM
    J Pineal Res; 1996 May; 20(4):175-86. PubMed ID: 8836950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct type II opsins in the eye decode light properties for background adaptation and behavioural background preference.
    Bertolesi GE; Debnath N; Atkinson-Leadbeater K; Niedzwiecka A; McFarlane S
    Mol Ecol; 2021 Dec; 30(24):6659-6676. PubMed ID: 34592025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinase C activation antagonizes melatonin-induced pigment aggregation in Xenopus laevis melanophores.
    Sugden D; Rowe SJ
    J Cell Biol; 1992 Dec; 119(6):1515-21. PubMed ID: 1334961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of background adaptation in Xenopus laevis: role of catecholamines and melanophore-stimulating hormone.
    van Zoest ID; Heijmen PS; Cruijsen PM; Jenks BG
    Gen Comp Endocrinol; 1989 Oct; 76(1):19-28. PubMed ID: 2599346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low temperature stimulates alpha-melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis.
    Tonosaki Y; Cruijsen PM; Nishiyama K; Yaginuma H; Roubos EW
    J Neuroendocrinol; 2004 Nov; 16(11):894-905. PubMed ID: 15584930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonvisual photoreceptors of the deep brain, pineal organs and retina.
    Vigh B; Manzano MJ; Zádori A; Frank CL; Lukáts A; Röhlich P; Szél A; Dávid C
    Histol Histopathol; 2002 Apr; 17(2):555-90. PubMed ID: 11962759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pineal complex of the clawed toad, Xenopus laevis Daud.: structure and function.
    Korf HW; Liesner R; Meissl H; Kirk A
    Cell Tissue Res; 1981; 216(1):113-30. PubMed ID: 7226202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusual development of light-reflecting pigment cells in intact and regenerating tail in the periodic albino mutant of Xenopus laevis.
    Fukuzawa T
    Cell Tissue Res; 2010 Oct; 342(1):53-66. PubMed ID: 20859642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pineal-specific agouti protein regulates teleost background adaptation.
    Zhang C; Song Y; Thompson DA; Madonna MA; Millhauser GL; Toro S; Varga Z; Westerfield M; Gamse J; Chen W; Cone RD
    Proc Natl Acad Sci U S A; 2010 Nov; 107(47):20164-71. PubMed ID: 20980662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative ultrastructural and physiological study on melanophores of wild-type and periodic albino mutants of Xenopus laevis.
    Seldenrijk R; Huijsman KG; Heussen AM; van de Veerdonk FC
    Cell Tissue Res; 1982; 222(1):1-9. PubMed ID: 6800656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.