These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35126153)

  • 21. De novo generation of dual-target ligands using adversarial training and reinforcement learning.
    Lu F; Li M; Min X; Li C; Zeng X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34410338
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantifying the Preferential Direction of the Model Gradient in Adversarial Training With Projected Gradient Descent.
    Lanfredi RB; Schroeder JD; Tasdizen T
    Pattern Recognit; 2023 Jul; 139():. PubMed ID: 37089791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reinforced Adversarial Neural Computer for de Novo Molecular Design.
    Putin E; Asadulaev A; Ivanenkov Y; Aladinskiy V; Sanchez-Lengeling B; Aspuru-Guzik A; Zhavoronkov A
    J Chem Inf Model; 2018 Jun; 58(6):1194-1204. PubMed ID: 29762023
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Geometry-Based Molecular Generation With Deep Constrained Variational Autoencoder.
    Li C; Yao J; Wei W; Niu Z; Zeng X; Li J; Wang J
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):4852-4861. PubMed ID: 35171779
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular substructure tree generative model for de novo drug design.
    Wang S; Song T; Zhang S; Jiang M; Wei Z; Li Z
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039853
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Tan Z; Li Y; Wu X; Zhang Z; Shi W; Yang S; Zhang W
    RSC Adv; 2023 Jan; 13(2):1031-1040. PubMed ID: 36686951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. LSTM-Based VAE-GAN for Time-Series Anomaly Detection.
    Niu Z; Yu K; Wu X
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Generative Adversarial Network Based a Rolling Bearing Data Generation Method Towards Fault Diagnosis.
    Huo L; Qi H; Fei S; Guan C; Li J
    Comput Intell Neurosci; 2022; 2022():7592258. PubMed ID: 35875772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generalizable and Discriminative Representations for Adversarially Robust Few-Shot Learning.
    Dong J; Wang Y; Xie X; Lai J; Ong YS
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; PP():. PubMed ID: 38536695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adversarial deep evolutionary learning for drug design.
    Abouchekeir S; Vu A; Mukaidaisi M; Grantham K; Tchagang A; Li Y
    Biosystems; 2022 Dec; 222():104790. PubMed ID: 36228831
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep Adversarial Metric Learning.
    Duan Y; Lu J; Zheng W; Zhou J
    IEEE Trans Image Process; 2020; 29(1):2037-2051. PubMed ID: 31670672
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated Generation of Novel Fragments Using Screening Data, a Dual SMILES Autoencoder, Transfer Learning and Syntax Correction.
    Bilsland AE; McAulay K; West R; Pugliese A; Bower J
    J Chem Inf Model; 2021 Jun; 61(6):2547-2559. PubMed ID: 34029470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generative Models for De Novo Drug Design.
    Tong X; Liu X; Tan X; Li X; Jiang J; Xiong Z; Xu T; Jiang H; Qiao N; Zheng M
    J Med Chem; 2021 Oct; 64(19):14011-14027. PubMed ID: 34533311
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PSAT-GAN: Efficient Adversarial Attacks Against Holistic Scene Understanding.
    Wang L; Yoon KJ
    IEEE Trans Image Process; 2021; 30():7541-7553. PubMed ID: 34449361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Information-Based Boundary Equilibrium Generative Adversarial Networks with Interpretable Representation Learning.
    Hah J; Lee W; Lee J; Park S
    Comput Intell Neurosci; 2018; 2018():6465949. PubMed ID: 30416519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep Convolutional Generative Adversarial Network (dcGAN) Models for Screening and Design of Small Molecules Targeting Cannabinoid Receptors.
    Bian Y; Wang J; Jun JJ; Xie XQ
    Mol Pharm; 2019 Nov; 16(11):4451-4460. PubMed ID: 31589460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep Learning to Generate
    Colby SM; Nuñez JR; Hodas NO; Corley CD; Renslow RR
    Anal Chem; 2020 Jan; 92(2):1720-1729. PubMed ID: 31661259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generative Deep Learning for Targeted Compound Design.
    Sousa T; Correia J; Pereira V; Rocha M
    J Chem Inf Model; 2021 Nov; 61(11):5343-5361. PubMed ID: 34699719
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Perceptual Adversarial Networks for Image-to-Image Transformation.
    Wang C; Xu C; Wanga C; Tao D
    IEEE Trans Image Process; 2018 Aug; 27(8):4066-4079. PubMed ID: 29993743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Applications of Deep Learning in Molecule Generation and Molecular Property Prediction.
    Walters WP; Barzilay R
    Acc Chem Res; 2021 Jan; 54(2):263-270. PubMed ID: 33370107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.