These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35126774)

  • 1. A new biological central pattern generator model and its relationship with the motor units.
    Lu Q; Wang X; Tian J
    Cogn Neurodyn; 2022 Feb; 16(1):135-147. PubMed ID: 35126774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics and coupling of fractional-order models of the motor cortex and central pattern generators.
    Lu Q
    J Neural Eng; 2020 Jun; 17(3):036021. PubMed ID: 32344390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of transitions between locomotor-like and paw shake-like rhythms in a model of a multistable central pattern generator.
    Parker J; Bondy B; Prilutsky BI; Cymbalyuk G
    J Neurophysiol; 2018 Sep; 120(3):1074-1089. PubMed ID: 29766765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling.
    Huang HJ; Ferris DP
    J Neuroeng Rehabil; 2010 Dec; 7():59. PubMed ID: 21143960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamatergic N2v cells are central pattern generator interneurons of the lymnaea feeding system: new model for rhythm generation.
    Brierley MJ; Yeoman MS; Benjamin PR
    J Neurophysiol; 1997 Dec; 78(6):3396-407. PubMed ID: 9405553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity in the multifunctional buccal central pattern generator of Helisoma illuminated by the identification of phase 3 interneurons.
    Quinlan EM; Murphy AD
    J Neurophysiol; 1996 Feb; 75(2):561-74. PubMed ID: 8714635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling Relationships between the Brain and the Central Pattern Generator Based on a Fractional-Order Extended Hindmarsh-Rose Model.
    Lu Q; Wang H; Lu W; Ji X
    J Integr Neurosci; 2024 May; 23(5):96. PubMed ID: 38812382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A modeling approach on why simple central pattern generators are built of irregular neurons.
    Reyes MB; Carelli PV; Sartorelli JC; Pinto RD
    PLoS One; 2015; 10(3):e0120314. PubMed ID: 25799556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulating Small Neural Circuits with a Discrete Computational Model.
    Bazenkov NI; Boldyshev BA; Dyakonova V; Kuznetsov OP
    Biol Cybern; 2020 Jun; 114(3):349-362. PubMed ID: 32170500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor Neurons Tune Premotor Activity in a Vertebrate Central Pattern Generator.
    Lawton KJ; Perry WM; Yamaguchi A; Zornik E
    J Neurosci; 2017 Mar; 37(12):3264-3275. PubMed ID: 28219984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic behavior of a neural network model of locomotor control in the lamprey.
    Jung R; Kiemel T; Cohen AH
    J Neurophysiol; 1996 Mar; 75(3):1074-86. PubMed ID: 8867119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circuit feedback increases activity level of a circuit input through interactions with intrinsic properties.
    Blitz DM
    J Neurophysiol; 2017 Aug; 118(2):949-963. PubMed ID: 28469000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model of a bilateral Brown-type central pattern generator for symmetric and asymmetric locomotion.
    Sobinov A; Yakovenko S
    J Neurophysiol; 2018 Mar; 119(3):1071-1083. PubMed ID: 29187551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using a model to assess the role of the spatiotemporal pattern of inhibitory input and intrasegmental electrical coupling in the intersegmental and side-to-side coordination of motor neurons by the leech heartbeat central pattern generator.
    GarcĂ­a PS; Wright TM; Cunningham IR; Calabrese RL
    J Neurophysiol; 2008 Sep; 100(3):1354-71. PubMed ID: 18579654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organization of mammalian locomotor rhythm and pattern generation.
    McCrea DA; Rybak IA
    Brain Res Rev; 2008 Jan; 57(1):134-46. PubMed ID: 17936363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric operation of the locomotor central pattern generator in the neonatal mouse spinal cord.
    Endo T; Kiehn O
    J Neurophysiol; 2008 Dec; 100(6):3043-54. PubMed ID: 18829847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic control of a central pattern generator circuit: a computational model of the snail feeding network.
    Vavoulis DV; Straub VA; Kemenes I; Kemenes G; Feng J; Benjamin PR
    Eur J Neurosci; 2007 May; 25(9):2805-18. PubMed ID: 17561845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State-dependent rhythmogenesis and frequency control in a half-center locomotor CPG.
    Ausborn J; Snyder AC; Shevtsova NA; Rybak IA; Rubin JE
    J Neurophysiol; 2018 Jan; 119(1):96-117. PubMed ID: 28978767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization.
    Zhong G; Shevtsova NA; Rybak IA; Harris-Warrick RM
    J Physiol; 2012 Oct; 590(19):4735-59. PubMed ID: 22869012
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.