These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 35127032)

  • 1. A meta-analysis of the effects of climate change on the mutualism between plants and arbuscular mycorrhizal fungi.
    Duarte AG; Maherali H
    Ecol Evol; 2022 Jan; 12(1):e8518. PubMed ID: 35127032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Response Patterns of Arbuscular Mycorrhizal and Ectomycorrhizal Symbionts Under Elevated CO
    Dong Y; Wang Z; Sun H; Yang W; Xu H
    Front Microbiol; 2018; 9():1248. PubMed ID: 29942293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of elevated atmospheric CO
    Frew A; Price JN; Oja J; Vasar M; Öpik M
    Mycorrhiza; 2021 May; 31(3):423-430. PubMed ID: 33674909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Host Plant Physiology and Mycorrhizal Functioning Shift across a Glacial through Future [CO2] Gradient.
    Becklin KM; Mullinix GW; Ward JK
    Plant Physiol; 2016 Oct; 172(2):789-801. PubMed ID: 27573369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aphid Herbivory Drives Asymmetry in Carbon for Nutrient Exchange between Plants and an Arbuscular Mycorrhizal Fungus.
    Charters MD; Sait SM; Field KJ
    Curr Biol; 2020 May; 30(10):1801-1808.e5. PubMed ID: 32275877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate change influences mycorrhizal fungal-plant interactions, but conclusions are limited by geographical study bias.
    Bennett AE; Classen AT
    Ecology; 2020 Apr; 101(4):e02978. PubMed ID: 31953955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated CO
    Liu Z; Yu Z; Song B; Li Y; Fang J; Guo Y; Jin J; Adams JM
    Sci Total Environ; 2023 May; 873():162321. PubMed ID: 36801413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arbuscular mycorrhiza formation and its function under elevated atmospheric O
    Wang S; Augé RM; Toler HD
    Environ Pollut; 2017 Jul; 226():104-117. PubMed ID: 28411495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration.
    Thirkell TJ; Pastok D; Field KJ
    Glob Chang Biol; 2020 Mar; 26(3):1725-1738. PubMed ID: 31645088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutualism Persistence and Abandonment during the Evolution of the Mycorrhizal Symbiosis.
    Maherali H; Oberle B; Stevens PF; Cornwell WK; McGlinn DJ
    Am Nat; 2016 Nov; 188(5):E113-E125. PubMed ID: 27788343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Responses of arbuscular mycorrhizal fungi to elevated atmospheric CO
    Song G; Wang QC; Zheng Y; He JZ
    Ying Yong Sheng Tai Xue Bao; 2022 Jun; 33(6):1709-1718. PubMed ID: 35729151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Warmer winters increase the rhizosphere carbon flow to mycorrhizal fungi more than to other microorganisms in a temperate grassland.
    Birgander J; Rousk J; Olsson PA
    Glob Chang Biol; 2017 Dec; 23(12):5372-5382. PubMed ID: 28675677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L.
    Rapparini F; Llusià J; Peñuelas J
    Plant Biol (Stuttg); 2008 Jan; 10(1):108-22. PubMed ID: 18211551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arbuscular mycorrhizal symbiosis can mitigate the negative effects of night warming on physiological traits of Medicago truncatula L.
    Hu Y; Wu S; Sun Y; Li T; Zhang X; Chen C; Lin G; Chen B
    Mycorrhiza; 2015 Feb; 25(2):131-42. PubMed ID: 25033924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Home-field advantage? evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis.
    Rúa MA; Antoninka A; Antunes PM; Chaudhary VB; Gehring C; Lamit LJ; Piculell BJ; Bever JD; Zabinski C; Meadow JF; Lajeunesse MJ; Milligan BG; Karst J; Hoeksema JD
    BMC Evol Biol; 2016 Jun; 16(1):122. PubMed ID: 27287440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking plant preference for higher-quality mycorrhizal symbionts under varying CO
    Werner GDA; Zhou Y; Pieterse CMJ; Kiers ET
    Ecol Evol; 2018 Jan; 8(1):78-87. PubMed ID: 29321853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Costs and Benefits of Plant-Arbuscular Mycorrhizal Fungal Interactions.
    Bennett AE; Groten K
    Annu Rev Plant Biol; 2022 May; 73():649-672. PubMed ID: 35216519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species.
    Martín-Robles N; Lehmann A; Seco E; Aroca R; Rillig MC; Milla R
    New Phytol; 2018 Apr; 218(1):322-334. PubMed ID: 29281758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tomato responses to Funneliformis mosseae during the early stages of arbuscular mycorrhizal symbiosis.
    Cesaro P; Massa N; Cantamessa S; Todeschini V; Bona E; Berta G; Barbato R; Lingua G
    Mycorrhiza; 2020 Sep; 30(5):601-610. PubMed ID: 32621137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of elevated CO2 and mycorrhizae on nitrogen acquisition: contrasting responses in Pinus taeda and Liquidambar styraciflua.
    Constable JV; Bassirirad H; Lussenhop J; Zerihun A
    Tree Physiol; 2001 Feb; 21(2-3):83-91. PubMed ID: 11303652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.