These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35127868)

  • 1. Deep Learning Analysis of Cardiac MRI in Legacy Datasets: Multi-Ethnic Study of Atherosclerosis.
    Suinesiaputra A; Mauger CA; Ambale-Venkatesh B; Bluemke DA; Dam Gade J; Gilbert K; Janse MHA; Hald LS; Werkhoven C; Wu CO; Lima JAC; Young AA
    Front Cardiovasc Med; 2021; 8():807728. PubMed ID: 35127868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated left and right ventricular chamber segmentation in cardiac magnetic resonance images using dense fully convolutional neural network.
    Penso M; Moccia S; Scafuri S; Muscogiuri G; Pontone G; Pepi M; Caiani EG
    Comput Methods Programs Biomed; 2021 Jun; 204():106059. PubMed ID: 33812305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MVnet: automated time-resolved tracking of the mitral valve plane in CMR long-axis cine images with residual neural networks: a multi-center, multi-vendor study.
    Gonzales RA; Seemann F; Lamy J; Mojibian H; Atar D; Erlinge D; Steding-Ehrenborg K; Arheden H; Hu C; Onofrey JA; Peters DC; Heiberg E
    J Cardiovasc Magn Reson; 2021 Dec; 23(1):137. PubMed ID: 34857009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI.
    Avendi MR; Kheradvar A; Jafarkhani H
    Med Image Anal; 2016 May; 30():108-119. PubMed ID: 26917105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic Left Ventricle Segmentation from Short-Axis Cardiac MRI Images Based on Fully Convolutional Neural Network.
    Shaaf ZF; Jamil MMA; Ambar R; Alattab AA; Yahya AA; Asiri Y
    Diagnostics (Basel); 2022 Feb; 12(2):. PubMed ID: 35204504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully‑automated deep‑learning segmentation of pediatric cardiovascular magnetic resonance of patients with complex congenital heart diseases.
    Karimi-Bidhendi S; Arafati A; Cheng AL; Wu Y; Kheradvar A; Jafarkhani H
    J Cardiovasc Magn Reson; 2020 Nov; 22(1):80. PubMed ID: 33256762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated biventricular quantification in patients with repaired tetralogy of Fallot using a three-dimensional deep learning segmentation model.
    Tilborghs S; Liang T; Raptis S; Ishikita A; Budts W; Dresselaers T; Bogaert J; Maes F; Wald RM; Van De Bruaene A
    J Cardiovasc Magn Reson; 2024 Winter; 26(2):101092. PubMed ID: 39270800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative CMR population imaging on 20,000 subjects of the UK Biobank imaging study: LV/RV quantification pipeline and its evaluation.
    Attar R; Pereañez M; Gooya A; Albà X; Zhang L; de Vila MH; Lee AM; Aung N; Lukaschuk E; Sanghvi MM; Fung K; Paiva JM; Piechnik SK; Neubauer S; Petersen SE; Frangi AF
    Med Image Anal; 2019 Aug; 56():26-42. PubMed ID: 31154149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT.
    Bruns S; Wolterink JM; Takx RAP; van Hamersvelt RW; Suchá D; Viergever MA; Leiner T; Išgum I
    Med Phys; 2020 Oct; 47(10):5048-5060. PubMed ID: 32786071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning-based Automated Segmentation of Left Ventricular Trabeculations and Myocardium on Cardiac MR Images: A Feasibility Study.
    Bartoli A; Fournel J; Bentatou Z; Habib G; Lalande A; Bernard M; Boussel L; Pontana F; Dacher JN; Ghattas B; Jacquier A
    Radiol Artif Intell; 2021 Jan; 3(1):e200021. PubMed ID: 33937851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Landmark Detection in Cardiac MRI by Using a Convolutional Neural Network.
    Xue H; Artico J; Fontana M; Moon JC; Davies RH; Kellman P
    Radiol Artif Intell; 2021 Sep; 3(5):e200197. PubMed ID: 34617022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep learning approach for fully automated cardiac shape modeling in tetralogy of Fallot.
    Govil S; Crabb BT; Deng Y; Dal Toso L; Puyol-Antón E; Pushparajah K; Hegde S; Perry JC; Omens JH; Hsiao A; Young AA; McCulloch AD
    J Cardiovasc Magn Reson; 2023 Feb; 25(1):15. PubMed ID: 36849960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional left ventricular segmentation from magnetic resonance imaging for patient-specific modelling purposes.
    Caiani EG; Colombo A; Pepi M; Piazzese C; Maffessanti F; Lang RM; Carminati MC
    Europace; 2014 Nov; 16 Suppl 4(Suppl 4):iv96-iv101. PubMed ID: 25362176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of Bi-Ventricular and Bi-Atrial Areas Using Four-Chamber Cine Cardiovascular Magnetic Resonance Imaging: Fully Automated Segmentation with a U-Net Convolutional Neural Network.
    Arai H; Kawakubo M; Sanui K; Iwamoto R; Nishimura H; Kadokami T
    Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully automated segmentation of left ventricular scar from 3D late gadolinium enhancement magnetic resonance imaging using a cascaded multi-planar U-Net (CMPU-Net).
    Zabihollahy F; Rajchl M; White JA; Ukwatta E
    Med Phys; 2020 Apr; 47(4):1645-1655. PubMed ID: 31955415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Quality-Controlled Cardiovascular Magnetic Resonance Pericardial Fat Quantification Using a Convolutional Neural Network in the UK Biobank.
    Bard A; Raisi-Estabragh Z; Ardissino M; Lee AM; Pugliese F; Dey D; Sarkar S; Munroe PB; Neubauer S; Harvey NC; Petersen SE
    Front Cardiovasc Med; 2021; 8():677574. PubMed ID: 34307493
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of age and sex on fully automated deep learning assessment of left ventricular function, volumes, and contours in cardiac magnetic resonance imaging.
    Chen V; Barker AJ; Golan R; Scott MB; Huh H; Wei Q; Sojoudi A; Markl M
    Int J Cardiovasc Imaging; 2021 Dec; 37(12):3539-3547. PubMed ID: 34185211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepHeartCT: A fully automatic artificial intelligence hybrid framework based on convolutional neural network and multi-atlas segmentation for multi-structure cardiac computed tomography angiography image segmentation.
    Bui V; Hsu LY; Chang LC; Sun AY; Tran L; Shanbhag SM; Zhou W; Mehta NN; Chen MY
    Front Artif Intell; 2022; 5():1059007. PubMed ID: 36483981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic 3D Bi-Ventricular Segmentation of Cardiac Images by a Shape-Refined Multi- Task Deep Learning Approach.
    Duan J; Bello G; Schlemper J; Bai W; Dawes TJW; Biffi C; de Marvao A; Doumoud G; O'Regan DP; Rueckert D
    IEEE Trans Med Imaging; 2019 Sep; 38(9):2151-2164. PubMed ID: 30676949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture.
    Qin W; Wu Y; Li S; Chen Y; Yang Y; Liu X; Zheng H; Liang D; Hu Z
    Biomed Phys Eng Express; 2020 Feb; 6(2):025009. PubMed ID: 33438635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.