BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 35128088)

  • 1. Pathway engineering strategies for improved product yield in yeast-based industrial ethanol production.
    van Aalst ACA; de Valk SC; van Gulik WM; Jansen MLA; Pronk JT; Mans R
    Synth Syst Biotechnol; 2022 Mar; 7(1):554-566. PubMed ID: 35128088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing anaerobic growth rate and fermentation kinetics in
    Papapetridis I; Goudriaan M; Vázquez Vitali M; de Keijzer NA; van den Broek M; van Maris AJA; Pronk JT
    Biotechnol Biofuels; 2018; 11():17. PubMed ID: 29416562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An engineered non-oxidative glycolytic bypass based on Calvin-cycle enzymes enables anaerobic co-fermentation of glucose and sorbitol by Saccharomyces cerevisiae.
    van Aalst ACA; Mans R; Pronk JT
    Biotechnol Biofuels Bioprod; 2022 Oct; 15(1):112. PubMed ID: 36253796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering strategies for optimizing acetate reduction, ethanol yield and osmotolerance in S
    Papapetridis I; van Dijk M; van Maris AJA; Pronk JT
    Biotechnol Biofuels; 2017; 10():107. PubMed ID: 28450888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of Saccharomyces cerevisiae-Lactobacillus fermentum-Dekkera bruxellensis and feedstock on fuel ethanol fermentation.
    Bassi APG; Meneguello L; Paraluppi AL; Sanches BCP; Ceccato-Antonini SR
    Antonie Van Leeuwenhoek; 2018 Sep; 111(9):1661-1672. PubMed ID: 29488182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production.
    Zhang L; Tang Y; Guo Z; Shi G
    J Ind Microbiol Biotechnol; 2013 Oct; 40(10):1153-60. PubMed ID: 23896974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol.
    Görgens JF; Bressler DC; van Rensburg E
    Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast.
    Guadalupe-Medina V; Wisselink HW; Luttik MA; de Hulster E; Daran JM; Pronk JT; van Maris AJ
    Biotechnol Biofuels; 2013 Aug; 6(1):125. PubMed ID: 23987569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation.
    Dong SJ; Lin XH; Li H
    Int J Biochem Cell Biol; 2015 Nov; 68():33-41. PubMed ID: 26279142
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Aßkamp MR; Klein M; Nevoigt E
    Biotechnol Biofuels; 2019; 12():257. PubMed ID: 31695748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.
    Zhang GC; Turner TL; Jin YS
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle.
    Kuyper M; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2004 Mar; 4(6):655-64. PubMed ID: 15040955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol.
    Kim SR; Skerker JM; Kong II; Kim H; Maurer MJ; Zhang GC; Peng D; Wei N; Arkin AP; Jin YS
    Metab Eng; 2017 Mar; 40():176-185. PubMed ID: 28216106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes.
    Gombert AK; van Maris AJ
    Curr Opin Biotechnol; 2015 Jun; 33():81-6. PubMed ID: 25576737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering redox cofactor utilization for detoxification of glycolaldehyde, a key inhibitor of bioethanol production, in yeast Saccharomyces cerevisiae.
    Jayakody LN; Horie K; Hayashi N; Kitagaki H
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6589-600. PubMed ID: 23744286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor.
    Guadalupe Medina V; Almering MJ; van Maris AJ; Pronk JT
    Appl Environ Microbiol; 2010 Jan; 76(1):190-5. PubMed ID: 19915031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between the production of ethanol and glycerol in fed-batch bioreactors.
    Mutton MJR; Ferrari FCS; Freita LA; Freita CM; Andrietta MDGS; Andrietta SR
    Braz J Microbiol; 2019 Apr; 50(2):389-394. PubMed ID: 30850977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of 4-ethylphenol, pH, sucrose and ethanol on the growth and fermentation capacity of the industrial strain of Saccharomyces cerevisiae PE-2.
    Covre EA; Silva LFL; Bastos RG; Ceccato-Antonini SR
    World J Microbiol Biotechnol; 2019 Aug; 35(9):136. PubMed ID: 31432249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving isobutanol production with the yeast
    Wess J; Brinek M; Boles E
    Biotechnol Biofuels; 2019; 12():173. PubMed ID: 31303893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance.
    Guo ZP; Zhang L; Ding ZY; Shi GY
    Metab Eng; 2011 Jan; 13(1):49-59. PubMed ID: 21126600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.