BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35128466)

  • 1. Interfacial rheology of sodium caseinate/high acyl gellan gum complexes: Stabilizing oil-in-water emulsions.
    Farooq S; Ahmad MI; Abdullah
    Curr Res Food Sci; 2022; 5():234-242. PubMed ID: 35128466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emulsion stability and dilatational viscoelasticity of ovalbumin/chitosan complexes at the oil-in-water interface.
    Xiong W; Ren C; Tian M; Yang X; Li J; Li B
    Food Chem; 2018 Jun; 252():181-188. PubMed ID: 29478530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical stability, microstructure and interfacial properties of solid-oil-in-water (S/O/W) emulsions stabilized by sodium caseinate/xanthan gum complexes.
    Zhang J; Xu D; Cao Y
    Food Res Int; 2023 Feb; 164():112370. PubMed ID: 36737958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of high acyl gellan gum on the rheological properties, stability, and salt ion stress of sodium caseinate emulsion.
    He X; Wang B; Xue Y; Li Y; Hu M; He X; Chen J; Meng Y
    Int J Biol Macromol; 2023 Apr; 234():123675. PubMed ID: 36801230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed layers of sodium caseinate + dextran sulfate: influence of order of addition to oil-water interface.
    Jourdain LS; Schmitt C; Leser ME; Murray BS; Dickinson E
    Langmuir; 2009 Sep; 25(17):10026-37. PubMed ID: 19459686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering interfacial properties by anionic surfactant-chitosan complexes to improve stability of oil-in-water emulsions.
    Zinoviadou KG; Scholten E; Moschakis T; Biliaderis CG
    Food Funct; 2012 Mar; 3(3):312-9. PubMed ID: 22298029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological changes in adsorbed protein films at the oil-water interface subjected to compression, expansion, and heat processing.
    Xu R; Dickinson E; Murray BS
    Langmuir; 2008 Mar; 24(5):1979-88. PubMed ID: 18211106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of gum Arabic, egg white protein, and their mixtures at the oil-water interface in limonene oil-in-water emulsions.
    Padala SR; Williams PA; Phillips GO
    J Agric Food Chem; 2009 Jun; 57(11):4964-73. PubMed ID: 19422219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soy/whey protein isolates: interfacial properties and effects on the stability of oil-in-water emulsions.
    Zhang X; Zhang S; Xie F; Han L; Li L; Jiang L; Qi B; Li Y
    J Sci Food Agric; 2021 Jan; 101(1):262-271. PubMed ID: 32627183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-linking proteins by laccase: Effects on the droplet size and rheology of emulsions stabilized by sodium caseinate.
    Sato ACK; Perrechil FA; Costa AAS; Santana RC; Cunha RL
    Food Res Int; 2015 Sep; 75():244-251. PubMed ID: 28454953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of sucrose ester concentration on the interfacial characteristics and physical properties of sodium caseinate-stabilized oil-in-water emulsions.
    Zhao Q; Liu D; Long Z; Yang B; Fang M; Kuang W; Zhao M
    Food Chem; 2014 May; 151():506-13. PubMed ID: 24423563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Asphaltene Concentration and Test Temperature on the Stability of Water-in-Model Waxy Crude Oil Emulsions.
    Li Y; Li C; Zhao Z; Cai W; Xia X; Yao B; Sun G; Yang F
    ACS Omega; 2022 Mar; 7(9):8023-8035. PubMed ID: 35284733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial composition and stability of emulsions made with mixtures of commercial sodium caseinate and whey protein concentrate.
    Ye A
    Food Chem; 2008 Oct; 110(4):946-52. PubMed ID: 26047284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of oil type and WPI/Tween 80 ratio at the oil-water interface: Adsorption, interfacial rheology and emulsion features.
    Gomes A; Costa ALR; Cunha RL
    Colloids Surf B Biointerfaces; 2018 Apr; 164():272-280. PubMed ID: 29413606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coalescence stability of emulsions containing globular milk proteins.
    Tcholakova S; Denkov ND; Ivanov IB; Campbell B
    Adv Colloid Interface Sci; 2006 Nov; 123-126():259-93. PubMed ID: 16854363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of competitive adsorption on flocculation and rheology of high-pressure-treated milk protein-stabilized emulsions.
    Dickinson E; James JD
    J Agric Food Chem; 1999 Jan; 47(1):25-30. PubMed ID: 10563843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential adsorption and interfacial displacement in emulsions stabilized with plant-dairy protein blends.
    Hinderink EBA; Sagis L; Schroën K; Berton-Carabin CC
    J Colloid Interface Sci; 2021 Feb; 583():704-713. PubMed ID: 33075603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical properties of emulsion-based hydroxypropyl methylcellulose films: effect of their microstructure.
    Zúñiga RN; Skurtys O; Osorio F; Aguilera JM; Pedreschi F
    Carbohydr Polym; 2012 Oct; 90(2):1147-58. PubMed ID: 22840052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of environmental stresses on stability of O/W emulsions containing cationic droplets stabilized by SDS-fish gelatin membranes.
    Surh J; Gu YS; Decker EA; McClements DJ
    J Agric Food Chem; 2005 May; 53(10):4236-44. PubMed ID: 15884866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.