These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

603 related articles for article (PubMed ID: 35128831)

  • 1. Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications.
    Hao Z; Li H; Wang Y; Hu Y; Chen T; Zhang S; Guo X; Cai L; Li J
    Adv Sci (Weinh); 2022 Apr; 9(11):e2103820. PubMed ID: 35128831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering.
    Tang JD; Mura C; Lampe KJ
    J Am Chem Soc; 2019 Mar; 141(12):4886-4899. PubMed ID: 30830776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications.
    Loo Y; Hauser CA
    Biomed Mater; 2015 Dec; 11(1):014103. PubMed ID: 26694103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designed peptide amphiphiles as scaffolds for tissue engineering.
    Sun W; Gregory DA; Zhao X
    Adv Colloid Interface Sci; 2023 Apr; 314():102866. PubMed ID: 36898186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications.
    Koutsopoulos S
    J Biomed Mater Res A; 2016 Apr; 104(4):1002-16. PubMed ID: 26707893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [PREPARATION AND BIOCOMPATIBILITY EVALUATION OF A FUNCTIONAL SELF-ASSEMBLING PEPTIDE NANOFIBER HYDROGEL DESIGNED WITH LINKING THE SHORT FUNCTIONAL MOTIF OF BONE MORPHOGENETIC PROTEIN 7].
    Liu L; Wu Y; Tao H; Jia Z; Li X; Wang D; He Q; Ruan D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Apr; 30(4):491-8. PubMed ID: 27411281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current Perspectives of Protein in Bone Tissue Engineering: Bone Structure, Ideal Scaffolds, Fabrication Techniques, Applications, Scopes, and Future Advances.
    Aslam Khan MU; Aslam MA; Bin Abdullah MF; Stojanović GM
    ACS Appl Bio Mater; 2024 Aug; 7(8):5082-5106. PubMed ID: 39007509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration.
    Zeimaran E; Pourshahrestani S; Fathi A; Razak NABA; Kadri NA; Sheikhi A; Baino F
    Acta Biomater; 2021 Dec; 136():1-36. PubMed ID: 34562661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harnessing the Potential of Self-Assembled Peptide Hydrogels for Neural Regeneration and Tissue Engineering.
    Najafi H; Farahavar G; Jafari M; Abolmaali SS; Azarpira N; Tamaddon AM
    Macromol Biosci; 2024 Jun; 24(6):e2300534. PubMed ID: 38547473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitosan-based high-strength supramolecular hydrogels for 3D bioprinting.
    Xu J; Zhang M; Du W; Zhao J; Ling G; Zhang P
    Int J Biol Macromol; 2022 Oct; 219():545-557. PubMed ID: 35907459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous nano- and microscale structural control of injectable hydrogels via the assembly of nanofibrous protein microparticles for tissue regeneration.
    Hou S; Niu X; Li L; Zhou J; Qian Z; Yao D; Yang F; Ma PX; Fan Y
    Biomaterials; 2019 Dec; 223():119458. PubMed ID: 31491598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular Adhesive Hydrogels for Tissue Engineering Applications.
    Zhao Y; Song S; Ren X; Zhang J; Lin Q; Zhao Y
    Chem Rev; 2022 Mar; 122(6):5604-5640. PubMed ID: 35023737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic peptide hydrogels as 3D scaffolds for tissue engineering.
    Ding X; Zhao H; Li Y; Lee AL; Li Z; Fu M; Li C; Yang YY; Yuan P
    Adv Drug Deliv Rev; 2020; 160():78-104. PubMed ID: 33091503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofiber-Based Hydrogels: Controllable Synthesis and Multifunctional Applications.
    Fu Q; Duan C; Yan Z; Li Y; Si Y; Liu L; Yu J; Ding B
    Macromol Rapid Commun; 2018 May; 39(10):e1800058. PubMed ID: 29656568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering.
    Gray VP; Amelung CD; Duti IJ; Laudermilch EG; Letteri RA; Lampe KJ
    Acta Biomater; 2022 Mar; 140():43-75. PubMed ID: 34710626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofunctionalized peptide nanofiber-based composite scaffolds for bone regeneration.
    He B; Zhao J; Ou Y; Jiang D
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():728-738. PubMed ID: 29853144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A parathyroid hormone related supramolecular peptide for multi-functionalized osteoregeneration.
    Hao Z; Feng Q; Wang Y; Wang Y; Li H; Hu Y; Chen T; Wang J; Chen R; Lv X; Yang Z; Chen J; Guo X; Li J
    Bioact Mater; 2024 Apr; 34():181-203. PubMed ID: 38235308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conducting Polymers for Tissue Engineering.
    Guo B; Ma PX
    Biomacromolecules; 2018 Jun; 19(6):1764-1782. PubMed ID: 29684268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic Self-Assembling Peptide Hydrogels for Tissue Engineering Applications.
    Lu J; Wang X
    Adv Exp Med Biol; 2018; 1064():297-312. PubMed ID: 30471040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanofiber-reinforced bulk hydrogel: preparation and structural, mechanical, and biological properties.
    Huang Y; Li X; Lu Z; Zhang H; Huang J; Yan K; Wang D
    J Mater Chem B; 2020 Nov; 8(42):9794-9803. PubMed ID: 33030182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.