These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

658 related articles for article (PubMed ID: 35128831)

  • 21. Evaluation of the hemocompatibility and rapid hemostasis of (RADA)4 peptide-based hydrogels.
    Saini A; Serrano K; Koss K; Unsworth LD
    Acta Biomater; 2016 Feb; 31():71-79. PubMed ID: 26654763
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chiral fiber supramolecular hydrogels for tissue engineering.
    Wang X; Feng C
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023 Mar; 15(2):e1847. PubMed ID: 36003042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies.
    Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Designing ECM-inspired supramolecular scaffolds by utilizing the interactions between a minimalistic neuroactive peptide and heparin.
    Sharma P; Roy S
    Nanoscale; 2023 Apr; 15(16):7537-7558. PubMed ID: 37022122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application.
    Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X
    Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oligoaniline-based conductive biomaterials for tissue engineering.
    Zarrintaj P; Bakhshandeh B; Saeb MR; Sefat F; Rezaeian I; Ganjali MR; Ramakrishna S; Mozafari M
    Acta Biomater; 2018 May; 72():16-34. PubMed ID: 29625254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues.
    Manoukian OS; Matta R; Letendre J; Collins P; Mazzocca AD; Kumbar SG
    Methods Mol Biol; 2017; 1570():261-278. PubMed ID: 28238143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ chondrogenic differentiation of bone marrow stromal cells in bioactive self-assembled peptide gels.
    Kim JE; Kim SH; Jung Y
    J Biosci Bioeng; 2015 Jul; 120(1):91-8. PubMed ID: 25540912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Realizing tissue integration with supramolecular hydrogels.
    Feliciano AJ; van Blitterswijk C; Moroni L; Baker MB
    Acta Biomater; 2021 Apr; 124():1-14. PubMed ID: 33508507
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering.
    Wan Z; Zhang P; Liu Y; Lv L; Zhou Y
    Acta Biomater; 2020 Jan; 101():26-42. PubMed ID: 31672585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tunable Macroscopic Alignment of Self-Assembling Peptide Nanofibers.
    Farsheed AC; Zevallos-Delgado C; Yu LT; Saeidifard S; Swain JWR; Makhoul JT; Thomas AJ; Cole CC; Garcia Huitron E; Grande-Allen KJ; Singh M; Larin KV; Hartgerink JD
    ACS Nano; 2024 May; 18(19):12477-12488. PubMed ID: 38699877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro.
    Liu X; Wang X; Wang X; Ren H; He J; Qiao L; Cui FZ
    Acta Biomater; 2013 Jun; 9(6):6798-805. PubMed ID: 23380207
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polymeric Nanocomposite Hydrogel Scaffolds in Craniofacial Bone Regeneration: A Comprehensive Review.
    Bashir MH; Korany NS; Farag DBE; Abbass MMS; Ezzat BA; Hegazy RH; Dörfer CE; Fawzy El-Sayed KM
    Biomolecules; 2023 Jan; 13(2):. PubMed ID: 36830575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review of fibrin and fibrin composites for bone tissue engineering.
    Noori A; Ashrafi SJ; Vaez-Ghaemi R; Hatamian-Zaremi A; Webster TJ
    Int J Nanomedicine; 2017; 12():4937-4961. PubMed ID: 28761338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-Healing Supramolecular Hydrogels for Tissue Engineering Applications.
    Saunders L; Ma PX
    Macromol Biosci; 2019 Jan; 19(1):e1800313. PubMed ID: 30565872
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Role of Extracellular Matrix (ECM) Adhesion Motifs in Functionalised Hydrogels.
    Morwood AJ; El-Karim IA; Clarke SA; Lundy FT
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375171
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polyelectrolyte Hydrogels for Tissue Engineering and Regenerative Medicine.
    Wang CG; Surat'man NEB; Chang JJ; Ong ZL; Li B; Fan X; Loh XJ; Li Z
    Chem Asian J; 2022 Sep; 17(18):e202200604. PubMed ID: 35869819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Natural silk nanofibers as building blocks for biomimetic aerogel scaffolds.
    Zhou S; Xiao J; Ji Y; Feng Y; Yan S; Li X; Zhang Q; You R
    Int J Biol Macromol; 2023 May; 237():124223. PubMed ID: 36996961
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-component peptide hydrogels - a systematic study incorporating biomolecules for the exploration of diverse, tuneable biomaterials.
    Falcone N; Shao T; Andoy NMO; Rashid R; Sullan RMA; Sun X; Kraatz HB
    Biomater Sci; 2020 Oct; 8(20):5601-5614. PubMed ID: 32832942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Facile engineering of ECM-mimetic injectable dual crosslinking hydrogels with excellent mechanical resilience, tissue adhesion, and biocompatibility.
    Fu H; Yu C; Li X; Bao H; Zhang B; Chen Z; Zhang Z
    J Mater Chem B; 2021 Dec; 9(48):10003-10014. PubMed ID: 34874044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.