These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35129169)

  • 1. Imaging Mitochondrial Ca2+ Uptake in Astrocytes and Neurons using Genetically Encoded Ca2+ Indicators (GECIs).
    Zhang N; Zhang Z; Ozden I; Ding S
    J Vis Exp; 2022 Jan; (179):. PubMed ID: 35129169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging of Mitochondrial and Cytosolic Ca
    Zhang N; Ding S
    Curr Protoc Neurosci; 2018 Jan; 82():2.29.1-2.29.11. PubMed ID: 29357111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging of mitochondrial Ca2+ dynamics in astrocytes using cell-specific mitochondria-targeted GCaMP5G/6s: mitochondrial Ca2+ uptake and cytosolic Ca2+ availability via the endoplasmic reticulum store.
    Li H; Wang X; Zhang N; Gottipati MK; Parpura V; Ding S
    Cell Calcium; 2014 Dec; 56(6):457-66. PubMed ID: 25443655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial Calcium Waves by Electrical Stimulation in Cultured Hippocampal Neurons.
    Eom Y; Kim SR; Kim YK; Lee SH
    Mol Neurobiol; 2024 Jun; 61(6):3477-3489. PubMed ID: 37995079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity and metabolism-related Ca2+ and mitochondrial dynamics in co-cultured human fetal cortical neurons and astrocytes.
    Fu W; Ruangkittisakul A; MacTavish D; Baker GB; Ballanyi K; Jhamandas JH
    Neuroscience; 2013 Oct; 250():520-35. PubMed ID: 23876319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ mitochondrial Ca2+ buffering differences of intact neurons and astrocytes from cortex and striatum.
    Oliveira JM; Gonçalves J
    J Biol Chem; 2009 Feb; 284(8):5010-20. PubMed ID: 19106091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetically encoded calcium indicators and astrocyte calcium microdomains.
    Tong X; Shigetomi E; Looger LL; Khakh BS
    Neuroscientist; 2013 Jun; 19(3):274-91. PubMed ID: 23264008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging intracellular Ca²⁺ signals in striatal astrocytes from adult mice using genetically-encoded calcium indicators.
    Jiang R; Haustein MD; Sofroniew MV; Khakh BS
    J Vis Exp; 2014 Nov; (93):e51972. PubMed ID: 25490346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reciprocal Regulation of Mitochondrial Dynamics and Calcium Signaling in Astrocyte Processes.
    Jackson JG; Robinson MB
    J Neurosci; 2015 Nov; 35(45):15199-213. PubMed ID: 26558789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local energy on demand: Are 'spontaneous' astrocytic Ca
    Oheim M; Schmidt E; Hirrlinger J
    Brain Res Bull; 2018 Jan; 136():54-64. PubMed ID: 28450076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial exchanger NCLX plays a major role in the intracellular Ca2+ signaling, gliotransmission, and proliferation of astrocytes.
    Parnis J; Montana V; Delgado-Martinez I; Matyash V; Parpura V; Kettenmann H; Sekler I; Nolte C
    J Neurosci; 2013 Apr; 33(17):7206-19. PubMed ID: 23616530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial sodium/calcium exchanger NCLX regulates glycolysis in astrocytes, impacting on cognitive performance.
    Cabral-Costa JV; Vicente-Gutiérrez C; Agulla J; Lapresa R; Elrod JW; Almeida Á; Bolaños JP; Kowaltowski AJ
    J Neurochem; 2023 May; 165(4):521-535. PubMed ID: 36563047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytosolic and Mitochondrial Ca
    Inoshita T; Imai Y
    Methods Mol Biol; 2021; 2322():207-214. PubMed ID: 34043206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial Ca(2+) Processing by a Unit of Mitochondrial Ca(2+) Uniporter and Na(+)/Ca(2+) Exchanger Supports the Neuronal Ca(2+) Influx via Activated Glutamate Receptors.
    Strokin M; Reiser G
    Neurochem Res; 2016 Jun; 41(6):1250-62. PubMed ID: 26842930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zn
    Ji SG; Weiss JH
    Exp Neurol; 2018 Apr; 302():181-195. PubMed ID: 29355498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of rapid reactive oxygen species generation in response to cytosolic Ca2+ or Zn2+ loads in cortical neurons.
    Clausen A; McClanahan T; Ji SG; Weiss JH
    PLoS One; 2013; 8(12):e83347. PubMed ID: 24340096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ex Vivo Imaging of Mitochondrial Dynamics and Trafficking in Astrocytes.
    Farnan JK; Green KK; Jackson JG
    Curr Protoc Neurosci; 2020 Jun; 92(1):e94. PubMed ID: 32176459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Transgenic Mouse Line for Imaging Mitochondrial Calcium Signals.
    Redolfi N; Greotti E; Zanetti G; Hochepied T; Fasolato C; Pendin D; Pozzan T
    Function (Oxf); 2021; 2(3):zqab012. PubMed ID: 35330679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient Oxygen/Glucose Deprivation Causes a Delayed Loss of Mitochondria and Increases Spontaneous Calcium Signaling in Astrocytic Processes.
    O'Donnell JC; Jackson JG; Robinson MB
    J Neurosci; 2016 Jul; 36(27):7109-27. PubMed ID: 27383588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses.
    Shigetomi E; Bushong EA; Haustein MD; Tong X; Jackson-Weaver O; Kracun S; Xu J; Sofroniew MV; Ellisman MH; Khakh BS
    J Gen Physiol; 2013 May; 141(5):633-47. PubMed ID: 23589582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.