BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35129170)

  • 1. A Flexible Platform for Monitoring Cerebellum-Dependent Sensory Associative Learning.
    Broussard GJ; Kislin M; Jung C; Wang SS
    J Vis Exp; 2022 Jan; (179):. PubMed ID: 35129170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climbing fibers provide essential instructive signals for associative learning.
    Silva NT; Ramírez-Buriticá J; Pritchett DL; Carey MR
    Nat Neurosci; 2024 May; 27(5):940-951. PubMed ID: 38565684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locomotor activity modulates associative learning in mouse cerebellum.
    Albergaria C; Silva NT; Pritchett DL; Carey MR
    Nat Neurosci; 2018 May; 21(5):725-735. PubMed ID: 29662214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conditioned eyeblink learning is formed and stored without cerebellar granule cell transmission.
    Wada N; Kishimoto Y; Watanabe D; Kano M; Hirano T; Funabiki K; Nakanishi S
    Proc Natl Acad Sci U S A; 2007 Oct; 104(42):16690-5. PubMed ID: 17923666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebellar-dependent expression of motor learning during eyeblink conditioning in head-fixed mice.
    Heiney SA; Wohl MP; Chettih SN; Ruffolo LI; Medina JF
    J Neurosci; 2014 Nov; 34(45):14845-53. PubMed ID: 25378152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graded Control of Climbing-Fiber-Mediated Plasticity and Learning by Inhibition in the Cerebellum.
    Rowan MJM; Bonnan A; Zhang K; Amat SB; Kikuchi C; Taniguchi H; Augustine GJ; Christie JM
    Neuron; 2018 Sep; 99(5):999-1015.e6. PubMed ID: 30122378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic Excitability Increase in Cerebellar Purkinje Cells after Delay Eye-Blink Conditioning in Mice.
    Titley HK; Watkins GV; Lin C; Weiss C; McCarthy M; Disterhoft JF; Hansel C
    J Neurosci; 2020 Mar; 40(10):2038-2046. PubMed ID: 32015022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity.
    Antonietti A; Casellato C; D'Angelo E; Pedrocchi A
    IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2748-2762. PubMed ID: 27608482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebellum-dependent associative learning is not impaired in a mouse model of neurofibromatosis type 1.
    Ottenhoff MJ; Dijkhuizen S; Ypelaar ACH; de Oude NL; Koekkoek SKE; Wang SS; De Zeeuw CI; Elgersma Y; Boele HJ
    Sci Rep; 2022 Nov; 12(1):19041. PubMed ID: 36351971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learned response sequences in cerebellar Purkinje cells.
    Jirenhed DA; Rasmussen A; Johansson F; Hesslow G
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):6127-6132. PubMed ID: 28533379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice.
    Ohmae S; Medina JF
    Nat Neurosci; 2015 Dec; 18(12):1798-803. PubMed ID: 26551541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitatory Cerebellar Nucleocortical Circuit Provides Internal Amplification during Associative Conditioning.
    Gao Z; Proietti-Onori M; Lin Z; Ten Brinke MM; Boele HJ; Potters JW; Ruigrok TJ; Hoebeek FE; De Zeeuw CI
    Neuron; 2016 Feb; 89(3):645-57. PubMed ID: 26844836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reevaluating the ability of cerebellum in associative motor learning.
    Li DB; Yao J; Sun L; Wu B; Li X; Liu SL; Hou JM; Liu HL; Sui JF; Wu GY
    Sci Rep; 2019 Apr; 9(1):6029. PubMed ID: 30988338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaired classical eyeblink conditioning in cerebellar-lesioned and Purkinje cell degeneration (pcd) mutant mice.
    Chen L; Bao S; Lockard JM; Kim JK; Thompson RF
    J Neurosci; 1996 Apr; 16(8):2829-38. PubMed ID: 8786457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prolonging the postcomplex spike pause speeds eyeblink conditioning.
    Maiz J; Karakossian MH; Pakaprot N; Robleto K; Thompson RF; Otis TS
    Proc Natl Acad Sci U S A; 2012 Oct; 109(41):16726-30. PubMed ID: 22988089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic mechanisms for associative learning in the cerebellar nuclei.
    Broersen R; Albergaria C; Carulli D; Carey MR; Canto CB; De Zeeuw CI
    Nat Commun; 2023 Nov; 14(1):7459. PubMed ID: 37985778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coding of stimulus strength via analog calcium signals in Purkinje cell dendrites of awake mice.
    Najafi F; Giovannucci A; Wang SS; Medina JF
    Elife; 2014 Sep; 3():e03663. PubMed ID: 25205669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absence of associative motor learning and impaired time perception in a rare case of complete cerebellar agenesis.
    Wu B; Yao J; Wu GY; Li X; Gao WJ; Zhang RW; Sui JF
    Neuropsychologia; 2018 Aug; 117():551-557. PubMed ID: 30031016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for combining multiple-units readout of optogenetic control with natural stimulation-evoked eyeblink conditioning in freely-moving mice.
    Zhang J; Zhang KY; Zhang LB; Zhang WW; Feng H; Yao ZX; Hu B; Chen H
    Sci Rep; 2019 Feb; 9(1):1857. PubMed ID: 30755637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebellar learning mechanisms.
    Freeman JH
    Brain Res; 2015 Sep; 1621():260-9. PubMed ID: 25289586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.