These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35129365)

  • 1. Multivalency-Induced Shape Deformation of Nanoscale Lipid Vesicles: Size-Dependent Membrane Bending Effects.
    Park H; Sut TN; Yoon BK; Zhdanov VP; Kim JW; Cho NJ; Jackman JA
    J Phys Chem Lett; 2022 Feb; 13(6):1480-1488. PubMed ID: 35129365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling How Cholesterol Affects Multivalency-Induced Membrane Deformation of Sub-100 nm Lipid Vesicles.
    Park H; Sut TN; Yoon BK; Zhdanov VP; Cho NJ; Jackman JA
    Langmuir; 2022 Dec; 38(51):15950-15959. PubMed ID: 36515977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling How Multivalency Triggers Shape Deformation of Sub-100 nm Lipid Vesicles.
    Park H; Sut TN; Yoon BK; Zhdanov VP; Cho NJ; Jackman JA
    J Phys Chem Lett; 2021 Jul; 12(28):6722-6729. PubMed ID: 34263601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticles binding to lipid membranes: from vesicle-based gels to vesicle tubulation and destruction.
    Zuraw-Weston S; Wood DA; Torres IK; Lee Y; Wang LS; Jiang Z; Lázaro GR; Wang S; Rodal AA; Hagan MF; Rotello VM; Dinsmore AD
    Nanoscale; 2019 Oct; 11(39):18464-18474. PubMed ID: 31577313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding the Scope of Reporting Nanoparticles: Sensing of Lipid Phase Transitions and Nanoviscosities in Lipid Membranes.
    Ober K; Volz-Rakebrand P; Stellmacher J; Brodwolf R; Licha K; Haag R; Alexiev U
    Langmuir; 2019 Sep; 35(35):11422-11434. PubMed ID: 31378067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of membrane asymmetry alters the interactions of erythrocytes with engineered silica nanoparticles.
    Bigdelou P; Vahedi A; Kiosidou E; Farnoud AM
    Biointerphases; 2020 Jun; 15(4):041001. PubMed ID: 32600052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Nanoparticle-Interfaced Lipid Bilayer Membranes.
    Kim S; Seo J; Park HH; Kim N; Oh JW; Nam JM
    Acc Chem Res; 2019 Oct; 52(10):2793-2805. PubMed ID: 31553568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand-receptor-mediated attachment of lipid vesicles to a supported lipid bilayer.
    Zhdanov VP
    Eur Biophys J; 2020 Jul; 49(5):395-400. PubMed ID: 32556429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curved membrane structures induced by native lipids in giant vesicles.
    Nair KS; Raj NB; Nampoothiri KM; Mohanan G; Acosta-Gutiérrez S; Bajaj H
    J Colloid Interface Sci; 2022 Apr; 611():397-407. PubMed ID: 34963074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Receptor-mediated membrane adhesion of lipid-polymer hybrid (LPH) nanoparticles studied by dissipative particle dynamics simulations.
    Li Z; Gorfe AA
    Nanoscale; 2015 Jan; 7(2):814-24. PubMed ID: 25438167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation and size distribution of self-assembled vesicles.
    Huang C; Quinn D; Sadovsky Y; Suresh S; Hsia KJ
    Proc Natl Acad Sci U S A; 2017 Mar; 114(11):2910-2915. PubMed ID: 28265065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase changes in mixed lipid/polymer membranes by multivalent nanoparticle recognition.
    Olubummo A; Schulz M; Schöps R; Kressler J; Binder WH
    Langmuir; 2014 Jan; 30(1):259-67. PubMed ID: 24359326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoplasmonic biosensing for soft matter adsorption: kinetics of lipid vesicle attachment and shape deformation.
    Jackman JA; Zhdanov VP; Cho NJ
    Langmuir; 2014 Aug; 30(31):9494-503. PubMed ID: 25035920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constant pressure-controlled extrusion method for the preparation of Nano-sized lipid vesicles.
    Morton LA; Saludes JP; Yin H
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22760481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing nanomechanical responses of cell membranes.
    Kim J
    Sci Rep; 2020 Feb; 10(1):2301. PubMed ID: 32041981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal fluctuations and osmotic stability of lipid vesicles.
    Wennerström H; Sparr E; Stenhammar J
    Phys Rev E; 2022 Dec; 106(6-1):064607. PubMed ID: 36671149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insertion of nanoparticle clusters into vesicle bilayers.
    Bonnaud C; Monnier CA; Demurtas D; Jud C; Vanhecke D; Montet X; Hovius R; Lattuada M; Rothen-Rutishauser B; Petri-Fink A
    ACS Nano; 2014 Apr; 8(4):3451-60. PubMed ID: 24611878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation.
    Shen Z; Ye H; Li Y
    Phys Chem Chem Phys; 2018 Jun; 20(24):16372-16385. PubMed ID: 29445792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of Multivalent Interactions by Tracking Single Biological Nanoparticle Mobility on a Lipid Membrane.
    Block S; Zhdanov VP; Höök F
    Nano Lett; 2016 Jul; 16(7):4382-90. PubMed ID: 27241273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wrapping of nanoparticles by membranes.
    Bahrami AH; Raatz M; Agudo-Canalejo J; Michel R; Curtis EM; Hall CK; Gradzielski M; Lipowsky R; Weikl TR
    Adv Colloid Interface Sci; 2014 Jun; 208():214-24. PubMed ID: 24703299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.