These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35129657)

  • 21. Improving recombinant protein production in the Chlamydomonas reinhardtii chloroplast using vivid Verde Fluorescent Protein as a reporter.
    Braun-Galleani S; Baganz F; Purton S
    Biotechnol J; 2015 Aug; 10(8):1289-97. PubMed ID: 26098300
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strategies to facilitate transgene expression in Chlamydomonas reinhardtii.
    Eichler-Stahlberg A; Weisheit W; Ruecker O; Heitzer M
    Planta; 2009 Mar; 229(4):873-83. PubMed ID: 19127370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii.
    Wannathong T; Waterhouse JC; Young RE; Economou CK; Purton S
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5467-77. PubMed ID: 26887319
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expanding the spectral palette of fluorescent proteins for the green microalga Chlamydomonas reinhardtii.
    Rasala BA; Barrera DJ; Ng J; Plucinak TM; Rosenberg JN; Weeks DP; Oyler GA; Peterson TC; Haerizadeh F; Mayfield SP
    Plant J; 2013 May; 74(4):545-56. PubMed ID: 23521393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of Chlamydomonas reinhardtii endogenous genic flanking sequences for improved transgene expression.
    López-Paz C; Liu D; Geng S; Umen JG
    Plant J; 2017 Dec; 92(6):1232-1244. PubMed ID: 28980350
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The microalga Chlamydomonas reinhardtii as a platform for the production of human protein therapeutics.
    Rasala BA; Mayfield SP
    Bioeng Bugs; 2011; 2(1):50-4. PubMed ID: 21636988
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular Genetic Tools and Emerging Synthetic Biology Strategies to Increase Cellular Oil Content in Chlamydomonas reinhardtii.
    Kong F; Yamaoka Y; Ohama T; Lee Y; Li-Beisson Y
    Plant Cell Physiol; 2019 Jun; 60(6):1184-1196. PubMed ID: 30715500
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains.
    Rühle T; Hemschemeier A; Melis A; Happe T
    BMC Plant Biol; 2008 Oct; 8():107. PubMed ID: 18928519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression levels of domestic cDNA cassettes integrated in the nuclear genomes of various Chlamydomonas reinhardtii strains.
    Kong F; Yamasaki T; Ohama T
    J Biosci Bioeng; 2014 May; 117(5):613-6. PubMed ID: 24342172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CITRIC: cold-inducible translational readthrough in the chloroplast of Chlamydomonas reinhardtii using a novel temperature-sensitive transfer RNA.
    Young R; Purton S
    Microb Cell Fact; 2018 Nov; 17(1):186. PubMed ID: 30474564
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid and Efficient Colony-PCR for High Throughput Screening of Genetically Transformed
    Nouemssi SB; Ghribi M; Beauchemin R; Meddeb-Mouelhi F; Germain H; Desgagné-Penix I
    Life (Basel); 2020 Sep; 10(9):. PubMed ID: 32927613
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid construction and screening of artificial microRNA systems in Chlamydomonas reinhardtii.
    Hu J; Deng X; Shao N; Wang G; Huang K
    Plant J; 2014 Sep; 79(6):1052-64. PubMed ID: 24974733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression and Characterization of Functional Recombinant Bet v 1.0101 in the Chloroplast of Chlamydomonas reinhardtii.
    Hirschl S; Ralser C; Asam C; Gangitano A; Huber S; Ebner C; Bohle B; Wolf M; Briza P; Ferreira F; Griesbeck C; Wallner M
    Int Arch Allergy Immunol; 2017; 173(1):44-50. PubMed ID: 28494467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses.
    Rasala BA; Mayfield SP
    Photosynth Res; 2015 Mar; 123(3):227-39. PubMed ID: 24659086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Outlook in the application of Chlamydomonas reinhardtii chloroplast as a platform for recombinant protein production.
    Shamriz S; Ofoghi H
    Biotechnol Genet Eng Rev; 2016; 32(1-2):92-106. PubMed ID: 28359189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-throughput fluorescence-activated cell sorting for lipid hyperaccumulating Chlamydomonas reinhardtii mutants.
    Xie B; Stessman D; Hart JH; Dong H; Wang Y; Wright DA; Nikolau BJ; Spalding MH; Halverson LJ
    Plant Biotechnol J; 2014 Sep; 12(7):872-82. PubMed ID: 24702864
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tools for regulated gene expression in the chloroplast of Chlamydomonas.
    Rochaix JD; Surzycki R; Ramundo S
    Methods Mol Biol; 2014; 1132():413-24. PubMed ID: 24599871
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular factors affecting the accumulation of recombinant proteins in the Chlamydomonas reinhardtii chloroplast.
    Coragliotti AT; Beligni MV; Franklin SE; Mayfield SP
    Mol Biotechnol; 2011 May; 48(1):60-75. PubMed ID: 21113690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An improved ARS2-derived nuclear reporter enhances the efficiency and ease of genetic engineering in Chlamydomonas.
    Specht EA; Nour-Eldin HH; Hoang KT; Mayfield SP
    Biotechnol J; 2015 Mar; 10(3):473-9. PubMed ID: 25224580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intron-containing algal transgenes mediate efficient recombinant gene expression in the green microalga Chlamydomonas reinhardtii.
    Baier T; Wichmann J; Kruse O; Lauersen KJ
    Nucleic Acids Res; 2018 Jul; 46(13):6909-6919. PubMed ID: 30053227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.