These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 35129864)
1. Metataxonomic and metabolomic evidence of biofilm homeostasis disruption related to caries: An in vitro study. Sánchez MC; Velapatiño A; Llama-Palacios A; Valdés A; Cifuentes A; Ciudad MJ; Collado L Mol Oral Microbiol; 2022 Apr; 37(2):81-96. PubMed ID: 35129864 [TBL] [Abstract][Full Text] [Related]
2. Arginine Improves pH Homeostasis via Metabolism and Microbiome Modulation. Agnello M; Cen L; Tran NC; Shi W; McLean JS; He X J Dent Res; 2017 Jul; 96(8):924-930. PubMed ID: 28486080 [TBL] [Abstract][Full Text] [Related]
3. Effects of Antimicrobial Peptide GH12 on the Cariogenic Properties and Composition of a Cariogenic Multispecies Biofilm. Jiang W; Wang Y; Luo J; Li X; Zhou X; Li W; Zhang L Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30341079 [TBL] [Abstract][Full Text] [Related]
4. Protein relative abundance patterns associated with sucrose-induced dysbiosis are conserved across taxonomically diverse oral microcosm biofilm models of dental caries. Rudney JD; Jagtap PD; Reilly CS; Chen R; Markowski TW; Higgins L; Johnson JE; Griffin TJ Microbiome; 2015 Dec; 3():69. PubMed ID: 26684897 [TBL] [Abstract][Full Text] [Related]
5. Competition and Caries on Enamel of a Dual-Species Biofilm Model with Streptococcus mutans and Streptococcus sanguinis. Díaz-Garrido N; Lozano CP; Kreth J; Giacaman RA Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32826216 [TBL] [Abstract][Full Text] [Related]
6. Sucrose promotes caries progression by disrupting the microecological balance in oral biofilms: an in vitro study. Du Q; Fu M; Zhou Y; Cao Y; Guo T; Zhou Z; Li M; Peng X; Zheng X; Li Y; Xu X; He J; Zhou X Sci Rep; 2020 Feb; 10(1):2961. PubMed ID: 32076013 [TBL] [Abstract][Full Text] [Related]
7. Microbiomes of colored dental biofilms in children with or without severe caries experience. Nagai N; Homma H; Sakurai A; Takahashi N; Shintani S Clin Exp Dent Res; 2020 Dec; 6(6):659-668. PubMed ID: 32767520 [TBL] [Abstract][Full Text] [Related]
8. Ecological Effect of Arginine on Oral Microbiota. Zheng X; He J; Wang L; Zhou S; Peng X; Huang S; Zheng L; Cheng L; Hao Y; Li J; Xu J; Xu X; Zhou X Sci Rep; 2017 Aug; 7(1):7206. PubMed ID: 28775282 [TBL] [Abstract][Full Text] [Related]
9. Salivary microbiome and metabolome analysis of severe early childhood caries. Li K; Wang J; Du N; Sun Y; Sun Q; Yin W; Li H; Meng L; Liu X BMC Oral Health; 2023 Jan; 23(1):30. PubMed ID: 36658579 [TBL] [Abstract][Full Text] [Related]
10. Analysis of relative bacterial activity and lactate dehydrogenase gene expression of caries-associated bacteria in a site-specific natural biofilm: an ex vivo study. Walther C; Zumbülte S; Faerber CM; Wierichs RJ; Meyer-Lueckel H; Conrads G; Henne K; Esteves-Oliveira M Clin Oral Investig; 2021 Jun; 25(6):3669-3679. PubMed ID: 33226500 [TBL] [Abstract][Full Text] [Related]
11. Antimicrobial Peptide GH12 Prevents Dental Caries by Regulating Dental Plaque Microbiota. Jiang W; Wang Y; Luo J; Chen X; Zeng Y; Li X; Feng Z; Zhang L Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32414800 [TBL] [Abstract][Full Text] [Related]
12. Analysis of Bacterial Activity in Sound and Cariogenic Biofilm: A Pilot in vivo Study. Henne K; Gunesch AP; Walther C; Meyer-Lueckel H; Conrads G; Esteves-Oliveira M Caries Res; 2016; 50(5):480-488. PubMed ID: 27595541 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the oral microbiome of children associated with dental caries: A systematic study. Su S; Qi T; Wang W; Salama ES; Li Y Arch Oral Biol; 2023 Oct; 154():105776. PubMed ID: 37540967 [TBL] [Abstract][Full Text] [Related]
14. Effect of arginine on the growth and biofilm formation of oral bacteria. Huang X; Zhang K; Deng M; Exterkate RAM; Liu C; Zhou X; Cheng L; Ten Cate JM Arch Oral Biol; 2017 Oct; 82():256-262. PubMed ID: 28668766 [TBL] [Abstract][Full Text] [Related]
15. Microcosm biofilms originating from children with different caries experience have similar cariogenicity under successive sucrose challenges. Azevedo MS; van de Sande FH; Romano AR; Cenci MS Caries Res; 2011; 45(6):510-7. PubMed ID: 21967836 [TBL] [Abstract][Full Text] [Related]
16. l-Arginine Modifies the Exopolysaccharide Matrix and Thwarts Streptococcus mutans Outgrowth within Mixed-Species Oral Biofilms. He J; Hwang G; Liu Y; Gao L; Kilpatrick-Liverman L; Santarpia P; Zhou X; Koo H J Bacteriol; 2016 Oct; 198(19):2651-61. PubMed ID: 27161116 [TBL] [Abstract][Full Text] [Related]
17. Functionally Active Microbiome in Supragingival Biofilms in Health and Caries. Corralo DJ; Ev LD; Damé-Teixeira N; Maltz M; Arthur RA; Do T; Fatturi Parolo CC Caries Res; 2021; 55(6):603-616. PubMed ID: 34380135 [TBL] [Abstract][Full Text] [Related]
18. Effect of Rubusoside, a Natural Sucrose Substitute, on Streptococcus mutans Biofilm Cariogenic Potential and Virulence Gene Expression Guan C; Che F; Zhou H; Li Y; Li Y; Chu J Appl Environ Microbiol; 2020 Aug; 86(16):. PubMed ID: 32503907 [TBL] [Abstract][Full Text] [Related]
19. High abundance of sugar metabolisers in saliva of children with caries. Manzoor M; Lommi S; Furuholm J; Sarkkola C; Engberg E; Raju S; Viljakainen H Sci Rep; 2021 Feb; 11(1):4424. PubMed ID: 33627735 [TBL] [Abstract][Full Text] [Related]