These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35129951)

  • 1. Quantum Shells Boost the Optical Gain of Lasing Media.
    Cassidy J; Diroll BT; Mondal N; Berkinsky DB; Zhao K; Harankahage D; Porotnikov D; Gately R; Khon D; Proppe A; Bawendi MG; Schaller RD; Malko AV; Zamkov M
    ACS Nano; 2022 Feb; 16(2):3017-3026. PubMed ID: 35129951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Auger Recombination on Lasing in Heterostructured Quantum Dots with Engineered Core/Shell Interfaces.
    Park YS; Bae WK; Baker T; Lim J; Klimov VI
    Nano Lett; 2015 Nov; 15(11):7319-28. PubMed ID: 26397312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Green Light from Red-Emitting Nanocrystals: Broadband, Low-Threshold Lasing from Colloidal Quantum Shells in Optical Nanocavities.
    Zhao K; Zhou X; Li X; Moon J; Cassidy J; Harankahage D; Hu Z; Savoy SM; Gu Q; Zamkov M; Malko AV
    ACS Nano; 2024 Apr; 18(16):10946-10953. PubMed ID: 38613507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Area- and Thickness-Dependent Biexciton Auger Recombination in Colloidal CdSe Nanoplatelets: Breaking the "Universal Volume Scaling Law".
    Li Q; Lian T
    Nano Lett; 2017 May; 17(5):3152-3158. PubMed ID: 28418671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superposition Principle in Auger Recombination of Charged and Neutral Multicarrier States in Semiconductor Quantum Dots.
    Wu K; Lim J; Klimov VI
    ACS Nano; 2017 Aug; 11(8):8437-8447. PubMed ID: 28723072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sub-Single-Exciton Optical Gain in Lead Halide Perovskite Quantum Dots Revealed by Exciton Polarization Spectroscopy.
    Liu Y; Li Y; Gao K; Zhu J; Wu K
    J Am Chem Soc; 2023 Nov; 145(47):25864-25873. PubMed ID: 37971813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biexciton Blinking in CdSe-Based Quantum Dots.
    Vonk SJW; Rabouw FT
    J Phys Chem Lett; 2023 Jun; 14(23):5353-5361. PubMed ID: 37276380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets.
    Li Q; Lian T
    Acc Chem Res; 2019 Sep; 52(9):2684-2693. PubMed ID: 31433164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auger recombination of biexcitons and negative and positive trions in individual quantum dots.
    Park YS; Bae WK; Pietryga JM; Klimov VI
    ACS Nano; 2014 Jul; 8(7):7288-96. PubMed ID: 24909861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum Shell in a Shell: Engineering Colloidal Nanocrystals for a High-Intensity Excitation Regime.
    Harankahage D; Cassidy J; Beavon J; Huang J; Brown N; Berkinsky DB; Marder A; Kayira B; Montemurri M; Anzenbacher P; Schaller RD; Sun L; Bawendi MG; Malko AV; Diroll BT; Zamkov M
    J Am Chem Soc; 2023 Jun; 145(24):13326-13334. PubMed ID: 37279071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optically Excited Lasing in a Cavity-Based, High-Current-Density Quantum Dot Electroluminescent Device.
    Ahn N; Park YS; Livache C; Du J; Gungor K; Kim J; Klimov VI
    Adv Mater; 2023 Mar; 35(9):e2206613. PubMed ID: 36528387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-threshold laser medium utilizing semiconductor nanoshell quantum dots.
    Porotnikov D; Diroll BT; Harankahage D; Obloy L; Yang M; Cassidy J; Ellison C; Miller E; Rogers S; Tarnovsky AN; Schaller RD; Zamkov M
    Nanoscale; 2020 Sep; 12(33):17426-17436. PubMed ID: 32797122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Dielectric Screening for Auger Suppression in CdSe/CdS Quantum Dots by Epitaxial Growth of ZnS Shell.
    Hou X; Qin H; Peng X
    Nano Lett; 2021 May; 21(9):3871-3878. PubMed ID: 33938759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auger Recombination Lifetime Scaling for Type I and Quasi-Type II Core/Shell Quantum Dots.
    Philbin JP; Rabani E
    J Phys Chem Lett; 2020 Jul; 11(13):5132-5138. PubMed ID: 32513003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium-Lead-Halide Perovskite Quantum Dots.
    Makarov NS; Guo S; Isaienko O; Liu W; Robel I; Klimov VI
    Nano Lett; 2016 Apr; 16(4):2349-62. PubMed ID: 26882294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-single-exciton lasing using charged quantum dots coupled to a distributed feedback cavity.
    Kozlov OV; Park YS; Roh J; Fedin I; Nakotte T; Klimov VI
    Science; 2019 Aug; 365(6454):672-675. PubMed ID: 31416959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of interface-potential smoothness and wavefunction delocalization on Auger recombination in colloidal CdSe-based core/shell quantum dots.
    Hou X; Li Y; Qin H; Peng X
    J Chem Phys; 2019 Dec; 151(23):234703. PubMed ID: 31864257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of Intraband and Interband Auger Processes in Colloidal Core-Shell Quantum Dots.
    Rabouw FT; Vaxenburg R; Bakulin AA; van Dijk-Moes RJ; Bakker HJ; Rodina A; Lifshitz E; L Efros A; Koenderink AF; Vanmaekelbergh D
    ACS Nano; 2015 Oct; 9(10):10366-76. PubMed ID: 26389562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-Lived and Bright Biexcitons in Quantum Dots with Parabolic Band Potentials.
    Diroll BT; Hua M; Guzelturk B; Pálmai M; Tomczak K
    Nano Lett; 2023 Dec; 23(24):11975-11981. PubMed ID: 38079425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of high-density multi-excitons in medium-size CdSe/CdZnS/ZnS colloidal quantum dots through transient spectroscopy and their optical gain properties.
    Yang H; Li S; Zhang L; Xiang W; Zhang Y; Wang X; Xiao M; Cui Y; Zhang J
    Nanoscale; 2022 Apr; 14(14):5369-5376. PubMed ID: 35311884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.