These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35130156)

  • 1. Multi-Frequency Acoustic Levitation and Trapping of Particles in All Degrees of Freedom.
    Rothlisberger M; Schmidli G; Schuck M; Kolar JW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1572-1575. PubMed ID: 35130156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic levitation of an object larger than the acoustic wavelength.
    Andrade MAB; Okina FTA; Bernassau AL; Adamowski JC
    J Acoust Soc Am; 2017 Jun; 141(6):4148. PubMed ID: 28618830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the force and the position of acoustic traps with a tunable acoustofluidic chip: Application to spheroid manipulations.
    Jeger-Madiot N; Mousset X; Dupuis C; Rabiet L; Hoyos M; Peyrin JM; Aider JL
    J Acoust Soc Am; 2022 Jun; 151(6):4165. PubMed ID: 35778170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Holographic acoustic elements for manipulation of levitated objects.
    Marzo A; Seah SA; Drinkwater BW; Sahoo DR; Long B; Subramanian S
    Nat Commun; 2015 Oct; 6():8661. PubMed ID: 26505138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trapping and patterning of large particles and cells in a 1D ultrasonic standing wave.
    Habibi R; Devendran C; Neild A
    Lab Chip; 2017 Sep; 17(19):3279-3290. PubMed ID: 28840206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays.
    Ochiai Y; Hoshi T; Rekimoto J
    PLoS One; 2014; 9(5):e97590. PubMed ID: 24849371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic sorting of airborne particles by a phononic crystal waveguide.
    Korozlu N; Biçer A; Sayarcan D; Adem Kaya O; Cicek A
    Ultrasonics; 2022 Aug; 124():106777. PubMed ID: 35660202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of temperature dependent acoustic trapping characteristics by using concentric annular type dual element ultrasonic transducer.
    Chung IY; Lee J
    Ultrasonics; 2015 Feb; 56():220-6. PubMed ID: 25106111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustical boundary hologram for macroscopic rigid-body levitation.
    Inoue S; Mogami S; Ichiyama T; Noda A; Makino Y; Shinoda H
    J Acoust Soc Am; 2019 Jan; 145(1):328. PubMed ID: 30710964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calibration of sound forces in acoustic traps.
    Lee J; Lee C; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Oct; 57(10):2305-10. PubMed ID: 20889418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study on inter-particle acoustic forces.
    Garcia-Sabaté A; Castro A; Hoyos M; González-Cinca R
    J Acoust Soc Am; 2014 Mar; 135(3):1056-63. PubMed ID: 24606249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustofluidics 24: theory and experimental measurements of acoustic interaction force.
    Sepehrirahnama S; Ray Mohapatra A; Oberst S; Chiang YK; Powell DA; Lim KM
    Lab Chip; 2022 Sep; 22(18):3290-3313. PubMed ID: 35969199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring derived acoustic power of an ultrasound surgical device in the linear and nonlinear operating modes.
    Petosić A; Ivancević B; Svilar D
    Ultrasonics; 2009 Jun; 49(6-7):522-31. PubMed ID: 19217636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexural wave-based soft attractor walls for trapping microparticles and cells.
    Aghakhani A; Cetin H; Erkoc P; Tombak GI; Sitti M
    Lab Chip; 2021 Feb; 21(3):582-596. PubMed ID: 33355319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal considerations for microswimmer trap-and-release using standing surface acoustic waves.
    Cui M; Kim M; Weisensee PB; Meacham JM
    Lab Chip; 2021 Jun; 21(13):2534-2543. PubMed ID: 33998632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards the automation of micron-sized particle handling by use of acoustic manipulation assisted by microfluidics.
    Oberti S; Neild A; Möller D; Dual J
    Ultrasonics; 2008 Nov; 48(6-7):529-36. PubMed ID: 18649908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of selective optical manipulation of particles in acoustic levitation.
    Dumy G; Hoyos M; Aider JL
    J Acoust Soc Am; 2019 Dec; 146(6):4557. PubMed ID: 31893701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Holographic acoustic tweezers.
    Marzo A; Drinkwater BW
    Proc Natl Acad Sci U S A; 2019 Jan; 116(1):84-89. PubMed ID: 30559177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens.
    Cicek A; Korozlu N; Adem Kaya O; Ulug B
    Sci Rep; 2017 Mar; 7():43374. PubMed ID: 28252033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.