These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35130162)

  • 1. Recognizing Continuous Multiple Degrees of Freedom Foot Movements With Inertial Sensors.
    Zhu C; Luo L; Mai J; Wang Q
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():431-440. PubMed ID: 35130162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Lightweight Exoskeleton-Based Portable Gait Data Collection System.
    Haque MR; Imtiaz MH; Kwak ST; Sazonov E; Chang YH; Shen X
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Evaluation Index and Optimization Method for Ankle Rehabilitation Robots Based on Ankle-Foot Motion.
    Zhang J; Ma Z; Wei J; Yang S; Liu C; Guo S
    J Biomech Eng; 2023 May; 145(5):. PubMed ID: 36537826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation.
    Ahmed T; Islam MR; Brahmi B; Rahman MH
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable Biofeedback Improves Human-Robot Compliance during Ankle-Foot Exoskeleton-Assisted Gait Training: A Pre-Post Controlled Study in Healthy Participants.
    Pinheiro C; Figueiredo J; Magalhães N; Santos CP
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33080845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spherical parallel three degrees-of-freedom robot for ankle-foot neuro-rehabilitation.
    Malosio M; Negri SP; Pedrocchi N; Vicentini F; Caimmi M; Molinari Tosatti L
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3356-9. PubMed ID: 23366645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the degree of freedom and assistance characteristics of powered ankle-foot orthoses on gait stability.
    Choi HS; Baek YS
    PLoS One; 2020; 15(11):e0242000. PubMed ID: 33170866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematics study of a 10 degrees-of-freedom lower extremity exoskeleton for crutch-less walking rehabilitation.
    Liu J; He Y; Li F; Cao W; Wu X
    Technol Health Care; 2022; 30(3):747-755. PubMed ID: 34486995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive sliding-mode controller of a lower limb mobile exoskeleton for active rehabilitation.
    Pérez-San Lázaro R; Salgado I; Chairez I
    ISA Trans; 2021 Mar; 109():218-228. PubMed ID: 33077173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ALICE: Conceptual Development of a Lower Limb Exoskeleton Robot Driven by an On-Board Musculoskeletal Simulator.
    Cardona M; García Cena CE; Serrano F; Saltaren R
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32023988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a Purely Mechanical Sensor-Controller Integrated System for Walking Assistance on an Ankle-Foot Exoskeleton.
    Wang X; Guo S; Qu H; Song M
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31331126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematic Redundancy Analysis during Goal-Directed Motion for Trajectory Planning of an Upper-Limb Exoskeleton Robot.
    Wang C; Peng L; Hou ZG; Li J; Luo L; Chen S; Wang W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5251-5255. PubMed ID: 31947042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Teleoperation of an Ankle-Foot Prosthesis With a Wrist Exoskeleton.
    Welker CG; Chiu VL; Voloshina AS; Collins SH; Okamura AM
    IEEE Trans Biomed Eng; 2021 May; 68(5):1714-1725. PubMed ID: 33347402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assistive Control System for Upper Limb Rehabilitation Robot.
    Chen SH; Lien WM; Wang WW; Lee GD; Hsu LC; Lee KW; Lin SY; Lin CH; Fu LC; Lai JS; Luh JJ; Chen WS
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1199-1209. PubMed ID: 26929055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects.
    Miao Q; Zhang M; Wang C; Li H
    J Healthc Eng; 2018; 2018():1534247. PubMed ID: 29736230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance.
    Gasparri GM; Luque J; Lerner ZF
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):751-759. PubMed ID: 30908231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Time Human Activity Recognition with IMU and Encoder Sensors in Wearable Exoskeleton Robot via Deep Learning Networks.
    Jaramillo IE; Jeong JG; Lopez PR; Lee CH; Kang DY; Ha TJ; Oh JH; Jung H; Lee JH; Lee WH; Kim TS
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous Estimation of Human Knee Joint Angles by Fusing Kinematic and Myoelectric Signals.
    Sun N; Cao M; Chen Y; Chen Y; Wang J; Wang Q; Chen X; Liu T
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2446-2455. PubMed ID: 35994557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.