These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35130370)

  • 1. The Role of Hydrogen Bonds and Electrostatic Interactions in Enhancing Two-Photon Absorption in Green and Yellow Fluorescent Proteins.
    Grabarek D; Andruniów T
    Chemphyschem; 2022 Apr; 23(7):e202200003. PubMed ID: 35130370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum chemistry study of the multiphoton absorption in enhanced green fluorescent protein at the single amino acid residue level.
    Grabarek D; Andruniów T
    Chemphyschem; 2022 Oct; 23(20):e202200335. PubMed ID: 35875840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What is the Optimal Size of the Quantum Region in Embedding Calculations of Two-Photon Absorption Spectra of Fluorescent Proteins?
    Grabarek D; Andruniów T
    J Chem Theory Comput; 2020 Oct; 16(10):6439-6455. PubMed ID: 32862643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Functionals for TDDFT Calculations of One- and Two-Photon Absorption Properties of Neutral and Anionic Fluorescent Proteins Chromophores.
    Grabarek D; Andruniów T
    J Chem Theory Comput; 2019 Jan; 15(1):490-508. PubMed ID: 30485096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum chemistry behind bioimaging: insights from ab initio studies of fluorescent proteins and their chromophores.
    Bravaya KB; Grigorenko BL; Nemukhin AV; Krylov AI
    Acc Chem Res; 2012 Feb; 45(2):265-75. PubMed ID: 21882809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removing artifacts in polarizable embedding calculations of one- and two-photon absorption spectra of fluorescent proteins.
    Grabarek D; Andruniów T
    J Chem Phys; 2020 Dec; 153(21):215102. PubMed ID: 33291919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic Spectral Tuning Maps for Biological Chromophores.
    Orozco-Gonzalez Y; Kabir MP; Gozem S
    J Phys Chem B; 2019 Jun; 123(23):4813-4824. PubMed ID: 30869891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of the proton transfer wires influence on the one- and two-photon absorption properties of green fluorescent protein chromophore.
    Zhang MY; Xu C; Lin CS; Guan X; Cheng WD
    Org Biomol Chem; 2013 Feb; 11(8):1414-22. PubMed ID: 23338242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blue-Shifted Green Fluorescent Protein Homologues Are Brighter than Enhanced Green Fluorescent Protein under Two-Photon Excitation.
    Molina RS; Tran TM; Campbell RE; Lambert GG; Salih A; Shaner NC; Hughes TE; Drobizhev M
    J Phys Chem Lett; 2017 Jun; 8(12):2548-2554. PubMed ID: 28530831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combined quantum mechanics/molecular mechanics study of the one- and two-photon absorption in the green fluorescent protein.
    Steindal AH; Olsen JM; Ruud K; Frediani L; Kongsted J
    Phys Chem Chem Phys; 2012 Apr; 14(16):5440-51. PubMed ID: 22407300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure and Raman studies of dsFP483, a cyan fluorescent protein from Discosoma striata.
    Malo GD; Wang M; Wu D; Stelling AL; Tonge PJ; Wachter RM
    J Mol Biol; 2008 May; 378(4):871-86. PubMed ID: 18395223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hidden electronic excited state of enhanced green fluorescent protein.
    Hosoi H; Yamaguchi S; Mizuno H; Miyawaki A; Tahara T
    J Phys Chem B; 2008 Mar; 112(10):2761-3. PubMed ID: 18275187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast proton shuttling in Psammocora cyan fluorescent protein.
    Kennis JT; van Stokkum IH; Peterson DS; Pandit A; Wachter RM
    J Phys Chem B; 2013 Sep; 117(38):11134-43. PubMed ID: 23534404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-photon absorption of fluorescent protein chromophores incorporating non-canonical amino acids: TD-DFT screening and classical dynamics.
    Alaraby Salem M; Brown A
    Phys Chem Chem Phys; 2015 Oct; 17(38):25563-71. PubMed ID: 26370051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the Anti-Solvatochromic Two-Photon Fluorescence for Cirrhosis Imaging by Forming a Hydrogen-Bond Network.
    Ren TB; Xu W; Zhang QL; Zhang XX; Wen SY; Yi HB; Yuan L; Zhang XB
    Angew Chem Int Ed Engl; 2018 Jun; 57(25):7473-7477. PubMed ID: 29682856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic spectral tuning mechanism of the green fluorescent protein.
    Kaila VR; Send R; Sundholm D
    Phys Chem Chem Phys; 2013 Apr; 15(13):4491-5. PubMed ID: 23420178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative photophysical properties of some widely used fluorescent proteins under two-photon excitation conditions.
    Adhikari DP; Biener G; Stoneman MR; Badu DN; Paprocki JD; Eis A; Park PS; Popa I; Raicu V
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 262():120133. PubMed ID: 34243141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Photon Absorption Properties of Gold Fluorescent Protein: A Combined Molecular Dynamics and Quantum Chemistry Study.
    Şimşek Y; Brown A
    J Phys Chem B; 2018 Jun; 122(22):5738-5748. PubMed ID: 29741903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of the Protein Environment on Two-Photon Absorption Cross-Sections of the GFP Chromophore Anion Resolved at the XMCQDPT2 Level of Theory.
    Aslopovsky VR; Scherbinin AV; Kleshchina NN; Bochenkova AV
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of Two-Photon-Absorption Cross Sections Using Time-Dependent Density Functional Theory Tight Binding: Application to Fluorescent Protein Chromophores.
    Rossano-Tapia M; Brown A
    J Chem Theory Comput; 2019 May; 15(5):3153-3161. PubMed ID: 30896947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.