BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 35130517)

  • 21. Breast Tumor Classification in Ultrasound Images Using Combined Deep and Handcrafted Features.
    Daoud MI; Abdel-Rahman S; Bdair TM; Al-Najar MS; Al-Hawari FH; Alazrai R
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33265900
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A method for the automated classification of benign and malignant masses on digital breast tomosynthesis images using machine learning and radiomic features.
    Sakai A; Onishi Y; Matsui M; Adachi H; Teramoto A; Saito K; Fujita H
    Radiol Phys Technol; 2020 Mar; 13(1):27-36. PubMed ID: 31686300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transfer Learning From Convolutional Neural Networks for Computer-Aided Diagnosis: A Comparison of Digital Breast Tomosynthesis and Full-Field Digital Mammography.
    Mendel K; Li H; Sheth D; Giger M
    Acad Radiol; 2019 Jun; 26(6):735-743. PubMed ID: 30076083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification.
    Lee HS; Hong H; Jung DC; Park S; Kim J
    Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applying a new quantitative image analysis scheme based on global mammographic features to assist diagnosis of breast cancer.
    Chen X; Zargari A; Hollingsworth AB; Liu H; Zheng B; Qiu Y
    Comput Methods Programs Biomed; 2019 Oct; 179():104995. PubMed ID: 31443864
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new and fast image feature selection method for developing an optimal mammographic mass detection scheme.
    Tan M; Pu J; Zheng B
    Med Phys; 2014 Aug; 41(8):081906. PubMed ID: 25086537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets.
    Antropova N; Huynh BQ; Giger ML
    Med Phys; 2017 Oct; 44(10):5162-5171. PubMed ID: 28681390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computer-aided diagnosis of contrast-enhanced spectral mammography: A feasibility study.
    Patel BK; Ranjbar S; Wu T; Pockaj BA; Li J; Zhang N; Lobbes M; Zhang B; Mitchell JR
    Eur J Radiol; 2018 Jan; 98():207-213. PubMed ID: 29279165
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An experimental study on breast lesion detection and classification from ultrasound images using deep learning architectures.
    Cao Z; Duan L; Yang G; Yue T; Chen Q
    BMC Med Imaging; 2019 Jul; 19(1):51. PubMed ID: 31262255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computer-Aided Diagnosis of Spinal Tuberculosis From CT Images Based on Deep Learning With Multimodal Feature Fusion.
    Li Z; Wu F; Hong F; Gai X; Cao W; Zhang Z; Yang T; Wang J; Gao S; Peng C
    Front Microbiol; 2022; 13():823324. PubMed ID: 35283815
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Novel Medical Image Enhancement Algorithm for Breast Cancer Detection on Mammography Images Using Machine Learning.
    Avcı H; Karakaya J
    Diagnostics (Basel); 2023 Jan; 13(3):. PubMed ID: 36766453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network.
    Kooi T; van Ginneken B; Karssemeijer N; den Heeten A
    Med Phys; 2017 Mar; 44(3):1017-1027. PubMed ID: 28094850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep learning for patient-specific quality assurance: Identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks.
    Nyflot MJ; Thammasorn P; Wootton LS; Ford EC; Chaovalitwongse WA
    Med Phys; 2019 Feb; 46(2):456-464. PubMed ID: 30548601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of masses in digital breast tomosynthesis: comparison of machine learning in projection views and reconstructed slices.
    Chan HP; Wu YT; Sahiner B; Wei J; Helvie MA; Zhang Y; Moore RH; Kopans DB; Hadjiiski L; Way T
    Med Phys; 2010 Jul; 37(7):3576-86. PubMed ID: 20831065
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parenchymal texture analysis in digital mammography: A fully automated pipeline for breast cancer risk assessment.
    Zheng Y; Keller BM; Ray S; Wang Y; Conant EF; Gee JC; Kontos D
    Med Phys; 2015 Jul; 42(7):4149-60. PubMed ID: 26133615
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effective diagnostic model construction based on discriminative breast ultrasound image regions using deep feature extraction.
    Yu H; Sun H; Li J; Shi L; Bao N; Li H; Qian W; Zhou S
    Med Phys; 2021 Jun; 48(6):2920-2928. PubMed ID: 33690962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Representation learning for mammography mass lesion classification with convolutional neural networks.
    Arevalo J; González FA; Ramos-Pollán R; Oliveira JL; Guevara Lopez MA
    Comput Methods Programs Biomed; 2016 Apr; 127():248-57. PubMed ID: 26826901
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automated classification of nasal polyps in endoscopy video-frames using handcrafted and CNN features.
    Ay B; Turker C; Emre E; Ay K; Aydin G
    Comput Biol Med; 2022 Aug; 147():105725. PubMed ID: 35716434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computer assisted recognition of breast cancer in biopsy images via fusion of nucleus-guided deep convolutional features.
    George K; Sankaran P; K PJ
    Comput Methods Programs Biomed; 2020 Oct; 194():105531. PubMed ID: 32422473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feature Generalization for Breast Cancer Detection in Histopathological Images.
    Das R; Kaur K; Walia E
    Interdiscip Sci; 2022 Jun; 14(2):566-581. PubMed ID: 35482216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.