These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 35130535)
1. BoneMA-synthesis and characterization of a methacrylated bone-derived hydrogel for bioprinting of Parthiban SP; Athirasala A; Tahayeri A; Abdelmoniem R; George A; Bertassoni LE Biofabrication; 2021 Apr; 13(3):. PubMed ID: 35130535 [TBL] [Abstract][Full Text] [Related]
2. Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review. Dzobo K; Motaung KSCM; Adesida A Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31540457 [TBL] [Abstract][Full Text] [Related]
3. A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Skardal A; Devarasetty M; Kang HW; Mead I; Bishop C; Shupe T; Lee SJ; Jackson J; Yoo J; Soker S; Atala A Acta Biomater; 2015 Oct; 25():24-34. PubMed ID: 26210285 [TBL] [Abstract][Full Text] [Related]
4. Extracellular Matrix/Amorphous Magnesium Phosphate Bioink for 3D Bioprinting of Craniomaxillofacial Bone Tissue. Dubey N; Ferreira JA; Malda J; Bhaduri SB; Bottino MC ACS Appl Mater Interfaces; 2020 May; 12(21):23752-23763. PubMed ID: 32352748 [TBL] [Abstract][Full Text] [Related]
5. Bioink with cartilage-derived extracellular matrix microfibers enables spatial control of vascular capillary formation in bioprinted constructs. Terpstra ML; Li J; Mensinga A; de Ruijter M; van Rijen MHP; Androulidakis C; Galiotis C; Papantoniou I; Matsusaki M; Malda J; Levato R Biofabrication; 2022 Apr; 14(3):. PubMed ID: 35354130 [TBL] [Abstract][Full Text] [Related]
6. Efficacy of thermoresponsive, photocrosslinkable hydrogels derived from decellularized tendon and cartilage extracellular matrix for cartilage tissue engineering. Rothrauff BB; Coluccino L; Gottardi R; Ceseracciu L; Scaglione S; Goldoni L; Tuan RS J Tissue Eng Regen Med; 2018 Jan; 12(1):e159-e170. PubMed ID: 28486778 [TBL] [Abstract][Full Text] [Related]
7. Tissue-Specific Hydrogels for Three-Dimensional Printing and Potential Application in Peripheral Nerve Regeneration. Wang T; Han Y; Wu Z; Qiu S; Rao Z; Zhao C; Zhu Q; Quan D; Bai Y; Liu X Tissue Eng Part A; 2022 Feb; 28(3-4):161-174. PubMed ID: 34309417 [TBL] [Abstract][Full Text] [Related]
8. ECM concentration and cell-mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue. Zhang G; Varkey M; Wang Z; Xie B; Hou R; Atala A Biotechnol Bioeng; 2020 Apr; 117(4):1148-1158. PubMed ID: 31840798 [TBL] [Abstract][Full Text] [Related]
9. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects. Lin T; Liu S; Chen S; Qiu S; Rao Z; Liu J; Zhu S; Yan L; Mao H; Zhu Q; Quan D; Liu X Acta Biomater; 2018 Jun; 73():326-338. PubMed ID: 29649641 [TBL] [Abstract][Full Text] [Related]
10. Methacrylated Cartilage ECM-Based Hydrogels as Injectables and Bioinks for Cartilage Tissue Engineering. Behan K; Dufour A; Garcia O; Kelly D Biomolecules; 2022 Jan; 12(2):. PubMed ID: 35204718 [TBL] [Abstract][Full Text] [Related]
11. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
12. A Photo-Crosslinkable Kidney ECM-Derived Bioink Accelerates Renal Tissue Formation. Ali M; Pr AK; Yoo JJ; Zahran F; Atala A; Lee SJ Adv Healthc Mater; 2019 Apr; 8(7):e1800992. PubMed ID: 30725520 [TBL] [Abstract][Full Text] [Related]
13. 3D Bioprinting of Multi-Material Decellularized Liver Matrix Hydrogel at Physiological Temperatures. Khati V; Ramachandraiah H; Pati F; Svahn HA; Gaudenzi G; Russom A Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884324 [TBL] [Abstract][Full Text] [Related]
14. Elastic Modulus of ECM Hydrogels Derived from Decellularized Tissue Affects Capillary Network Formation in Endothelial Cells. Kobayashi M; Kadota J; Hashimoto Y; Fujisato T; Nakamura N; Kimura T; Kishida A Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32878178 [TBL] [Abstract][Full Text] [Related]
15. Decellularized skeletal muscle: A versatile biomaterial in tissue engineering and regenerative medicine. Philips C; Terrie L; Thorrez L Biomaterials; 2022 Apr; 283():121436. PubMed ID: 35248912 [TBL] [Abstract][Full Text] [Related]
16. Acellular matrix hydrogel for repair of the temporomandibular joint disc. Liang J; Yi P; Wang X; Huang F; Luan X; Zhao Z; Liu C J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2995-3007. PubMed ID: 32598574 [TBL] [Abstract][Full Text] [Related]
17. Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel. Beck EC; Barragan M; Tadros MH; Gehrke SH; Detamore MS Acta Biomater; 2016 Jul; 38():94-105. PubMed ID: 27090590 [TBL] [Abstract][Full Text] [Related]
18. Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix. Kuo KC; Lin RZ; Tien HW; Wu PY; Li YC; Melero-Martin JM; Chen YC Acta Biomater; 2015 Nov; 27():151-166. PubMed ID: 26348142 [TBL] [Abstract][Full Text] [Related]
19. Scanningless and continuous 3D bioprinting of human tissues with decellularized extracellular matrix. Yu C; Ma X; Zhu W; Wang P; Miller KL; Stupin J; Koroleva-Maharajh A; Hairabedian A; Chen S Biomaterials; 2019 Feb; 194():1-13. PubMed ID: 30562651 [TBL] [Abstract][Full Text] [Related]
20. Photoacoustic processing of decellularized extracellular matrix for biofabricating living constructs. Ferreira LP; Jorge C; Lagarto MR; Monteiro MV; Duarte IF; Gaspar VM; Mano JF Acta Biomater; 2024 Jul; 183():74-88. PubMed ID: 38838910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]