These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 35130730)
1. Nitrate Is an Environmental Cue in the Gut for Salmonella enterica Serovar Typhimurium Biofilm Dispersal through Curli Repression and Flagellum Activation via Cyclic-di-GMP Signaling. Miller AL; Nicastro LK; Bessho S; Grando K; White AP; Zhang Y; Queisser G; Buttaro BA; Tükel Ç mBio; 2021 Feb; 13(1):e0288621. PubMed ID: 35130730 [TBL] [Abstract][Full Text] [Related]
3. Complex c-di-GMP signaling networks mediate transition between virulence properties and biofilm formation in Salmonella enterica serovar Typhimurium. Ahmad I; Lamprokostopoulou A; Le Guyon S; Streck E; Barthel M; Peters V; Hardt WD; Römling U PLoS One; 2011; 6(12):e28351. PubMed ID: 22164276 [TBL] [Abstract][Full Text] [Related]
4. Yin and Yang of Biofilm Formation and Cyclic di-GMP Signaling of the Gastrointestinal Pathogen Salmonella enterica Serovar Typhimurium. Lamprokostopoulou A; Römling U J Innate Immun; 2022; 14(4):275-292. PubMed ID: 34775379 [TBL] [Abstract][Full Text] [Related]
5. Cyclic di-GMP signalling controls virulence properties of Salmonella enterica serovar Typhimurium at the mucosal lining. Lamprokostopoulou A; Monteiro C; Rhen M; Römling U Environ Microbiol; 2010 Jan; 12(1):40-53. PubMed ID: 19691499 [TBL] [Abstract][Full Text] [Related]
6. Dissecting the cyclic di-guanylate monophosphate signalling network regulating motility in Salmonella enterica serovar Typhimurium. Le Guyon S; Simm R; Rehn M; Römling U Environ Microbiol; 2015 Apr; 17(4):1310-20. PubMed ID: 25059628 [TBL] [Abstract][Full Text] [Related]
7. Complex regulatory network encompassing the Csr, c-di-GMP and motility systems of Salmonella Typhimurium. Jonas K; Edwards AN; Ahmad I; Romeo T; Römling U; Melefors O Environ Microbiol; 2010 Feb; 12(2):524-40. PubMed ID: 19919539 [TBL] [Abstract][Full Text] [Related]
8. Cyclic di-GMP Modulates a Metabolic Flux for Carbon Utilization in Salmonella enterica Serovar Typhimurium. Baek J; Yoon H Microbiol Spectr; 2023 Feb; 11(2):e0368522. PubMed ID: 36744926 [TBL] [Abstract][Full Text] [Related]
9. Reciprocal c-di-GMP signaling: Incomplete flagellum biogenesis triggers c-di-GMP signaling pathways that promote biofilm formation. Wu DC; Zamorano-Sánchez D; Pagliai FA; Park JH; Floyd KA; Lee CK; Kitts G; Rose CB; Bilotta EM; Wong GCL; Yildiz FH PLoS Genet; 2020 Mar; 16(3):e1008703. PubMed ID: 32176702 [TBL] [Abstract][Full Text] [Related]
10. L-Arabinose Transport and Metabolism in Vasicek EM; O'Neal L; Parsek MR; Fitch J; White P; Gunn JS Front Cell Infect Microbiol; 2021; 11():698146. PubMed ID: 34368016 [TBL] [Abstract][Full Text] [Related]
11. Salmonella enterica serovar Typhimurium STM1266 encodes a regulator of curli biofilm formation: the brfS gene. Kao S; Serfecz J; Sudhakar A; Likosky K; Romiyo V; Tursi S; Tükel Ç; Wilson JW FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 36792064 [TBL] [Abstract][Full Text] [Related]
12. Coordinated cyclic-di-GMP repression of Salmonella motility through YcgR and cellulose. Zorraquino V; García B; Latasa C; Echeverz M; Toledo-Arana A; Valle J; Lasa I; Solano C J Bacteriol; 2013 Feb; 195(3):417-28. PubMed ID: 23161026 [TBL] [Abstract][Full Text] [Related]
13. Modulation of biofilm-formation in Salmonella enterica serovar Typhimurium by the periplasmic DsbA/DsbB oxidoreductase system requires the GGDEF-EAL domain protein STM3615. Anwar N; Rouf SF; Römling U; Rhen M PLoS One; 2014; 9(8):e106095. PubMed ID: 25153529 [TBL] [Abstract][Full Text] [Related]
14. Role of EAL-containing proteins in multicellular behavior of Salmonella enterica serovar Typhimurium. Simm R; Lusch A; Kader A; Andersson M; Römling U J Bacteriol; 2007 May; 189(9):3613-23. PubMed ID: 17322315 [TBL] [Abstract][Full Text] [Related]
15. Detailed analysis of c-di-GMP mediated regulation of csgD expression in Salmonella typhimurium. Ahmad I; Cimdins A; Beske T; Römling U BMC Microbiol; 2017 Feb; 17(1):27. PubMed ID: 28148244 [TBL] [Abstract][Full Text] [Related]
16. BolA promotes the generation of multicellular behavior in S. Typhimurium by regulating the c-di-GMP pathway genes yeaJ and yhjH. Chen K; Li L; Zhou Z; Wang N; Dai C; Sun D; Li J; Xu C; Liao M; Zhang J Int J Food Microbiol; 2024 Feb; 411():110518. PubMed ID: 38101189 [TBL] [Abstract][Full Text] [Related]
17. YeiE Regulates Motility and Gut Colonization in Salmonella enterica Serotype Typhimurium. Westerman TL; McClelland M; Elfenbein JR mBio; 2021 Jun; 12(3):e0368020. PubMed ID: 34098734 [TBL] [Abstract][Full Text] [Related]
18. Exposure of Salmonella enterica Serovar typhimurium to a protective monoclonal IgA triggers exopolysaccharide production via a diguanylate cyclase-dependent pathway. Amarasinghe JJ; D'Hondt RE; Waters CM; Mantis NJ Infect Immun; 2013 Mar; 81(3):653-64. PubMed ID: 23230292 [TBL] [Abstract][Full Text] [Related]
19. Semiquantitative Analysis of the Red, Dry, and Rough Colony Morphology of Salmonella enterica Serovar Typhimurium and Escherichia coli Using Congo Red. Cimdins A; Simm R Methods Mol Biol; 2017; 1657():225-241. PubMed ID: 28889298 [TBL] [Abstract][Full Text] [Related]
20. Alteration of the rugose phenotype in waaG and ddhC mutants of Salmonella enterica serovar Typhimurium DT104 is associated with inverse production of curli and cellulose. Anriany Y; Sahu SN; Wessels KR; McCann LM; Joseph SW Appl Environ Microbiol; 2006 Jul; 72(7):5002-12. PubMed ID: 16820499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]