These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 35131268)
1. Insight into the role and mechanism of polysaccharide in polymorphous magnesium oxide nanoparticle synthesis for arsenate removal. Guo L; Lei R; Zhang TC; Du D; Zhan W Chemosphere; 2022 Jun; 296():133878. PubMed ID: 35131268 [TBL] [Abstract][Full Text] [Related]
2. Preparation of nanoscale iron (oxide, oxyhydroxides and zero-valent) particles derived from blueberries: Reactivity, characterization and removal mechanism of arsenate. Manquián-Cerda K; Cruces E; Angélica Rubio M; Reyes C; Arancibia-Miranda N Ecotoxicol Environ Saf; 2017 Nov; 145():69-77. PubMed ID: 28708983 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution. Zhu D; Chen Y; Yang H; Wang S; Wang X; Zhang S; Chen H Chemosphere; 2020 May; 247():125847. PubMed ID: 32069709 [TBL] [Abstract][Full Text] [Related]
4. Development of innovative and green adsorbents for in situ cleanup of fluoride-polluted groundwater: Mechanisms and field-scale studies. Ou JH; Wang CC; Verpoort F; Chien CC; Zhong HB; Kao CM Chemosphere; 2024 Feb; 350():141035. PubMed ID: 38160954 [TBL] [Abstract][Full Text] [Related]
5. Facile synthesis of MgO nanoparticles for effective degradation of organic dyes. Yadav P; Saini R; Bhaduri A Environ Sci Pollut Res Int; 2023 Jun; 30(28):71439-71453. PubMed ID: 35821325 [TBL] [Abstract][Full Text] [Related]
6. Efficiency of magnesium oxide nanoparticle in contaminants removal from environmental water samples: Optimization through central composite design. Guo Y; Zhou Z; Alshabrmi FM Chemosphere; 2024 Aug; 362():141734. PubMed ID: 38583531 [TBL] [Abstract][Full Text] [Related]
7. Use of adsorption-influencing parameters for designing the batch adsorber and neural network-based prediction modelling for the aqueous arsenate removal using combustion synthesised nano-alumina. Prabhakar R; Samadder SR Environ Sci Pollut Res Int; 2020 Jul; 27(21):26367-26384. PubMed ID: 32363464 [TBL] [Abstract][Full Text] [Related]
8. A novel approach for arsenic adsorbents regeneration using MgO. Tresintsi S; Simeonidis K; Katsikini M; Paloura EC; Bantsis G; Mitrakas M J Hazard Mater; 2014 Jan; 265():217-25. PubMed ID: 24361801 [TBL] [Abstract][Full Text] [Related]
9. Eco-Friendly Polysaccharide-Based Synthesis of Nanostructured MgO: Application in the Removal of Cu Balaba N; Horsth DFL; Correa JS; Primo JO; Jaerger S; Alves HJ; Bittencourt C; Anaissi FJ Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676431 [TBL] [Abstract][Full Text] [Related]
10. Stabilization of arsenic and lead by magnesium oxide (MgO) in different seawater concentrations. Kameda K; Hashimoto Y; Ok YS Environ Pollut; 2018 Feb; 233():952-959. PubMed ID: 29122367 [TBL] [Abstract][Full Text] [Related]
11. Wide pH range for fluoride removal from water by MHS-MgO/MgCO₃ adsorbent: kinetic, thermodynamic and mechanism studies. Zhang K; Wu S; Wang X; He J; Sun B; Jia Y; Luo T; Meng F; Jin Z; Lin D; Shen W; Kong L; Liu J J Colloid Interface Sci; 2015 May; 446():194-202. PubMed ID: 25668780 [TBL] [Abstract][Full Text] [Related]
12. Morphologically controlled synthesis of MgFe-LDH using MgO and succinic acid for enhanced arsenic adsorption: Kinetics, equilibrium, and mechanism studies. Zubair YO; Fuchida S; Oyama K; Tokoro C J Environ Sci (China); 2025 Feb; 148():637-649. PubMed ID: 39095196 [TBL] [Abstract][Full Text] [Related]
13. Temperature-dependent magnesium citrate modified formation of MgO nanoparticles biochar composites with efficient phosphate removal. Zhu D; Yang H; Chen X; Chen W; Cai N; Chen Y; Zhang S; Chen H Chemosphere; 2021 Jul; 274():129904. PubMed ID: 33979927 [TBL] [Abstract][Full Text] [Related]
14. A facile synthesis of nanostructured magnesium oxide particles for enhanced adsorption performance in reactive blue 19 removal. Nga NK; Hong PT; Lam TD; Huy TQ J Colloid Interface Sci; 2013 May; 398():210-6. PubMed ID: 23489606 [TBL] [Abstract][Full Text] [Related]
15. Superb removal capacity of hierarchically porous magnesium oxide for phosphate and methyl orange. Ahmed S; Guo Y; Li D; Tang P; Feng Y Environ Sci Pollut Res Int; 2018 Sep; 25(25):24907-24916. PubMed ID: 29931638 [TBL] [Abstract][Full Text] [Related]
16. Arsenate removal by layered double hydroxides embedded into spherical polymer beads: Batch and column studies. Nhat Ha HN; Kim Phuong NT; Boi An T; Mai Tho NT; Ngoc Thang T; Quang Minh B; Van Du C J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(5):403-13. PubMed ID: 26818806 [TBL] [Abstract][Full Text] [Related]
17. Facile synthesis of novel magnesium oxide nanoparticles for pesticide sorption from water. Kar A; Deole S; Gadratagi BG; Patil N; Guru-Pirasanna-Pandi G; Mahapatra B; Adak T Environ Sci Pollut Res Int; 2023 Sep; 30(45):101467-101482. PubMed ID: 37653192 [TBL] [Abstract][Full Text] [Related]
18. Removal of Sb(III) from wastewater by magnesium oxide and the related mechanisms. Xu S; Zhong Z; Liu W; Deng H; Lin Z Environ Res; 2020 Jul; 186():109489. PubMed ID: 32311525 [TBL] [Abstract][Full Text] [Related]
19. [Comparison of the adsorption of arsenite and arsenate anions from aqueous solution by calcined Mg-Al layered double hydroxides]. Xing K; Wang HZ; Li XY Huan Jing Ke Xue; 2009 Mar; 30(3):748-54. PubMed ID: 19432322 [TBL] [Abstract][Full Text] [Related]
20. Arsenate removal from aqueous solutions by cuttlebone/copper oxide nanobiocomposite. Momeni S; Ahmadi R; Nabipour I Environ Sci Pollut Res Int; 2019 Dec; 26(36):37162-37173. PubMed ID: 31749008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]