These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 35131295)

  • 1. Targeting fuel pocket of cancer cell metabolism: A focus on glutaminolysis.
    Sharma S; Agnihotri N; Kumar S
    Biochem Pharmacol; 2022 Apr; 198():114943. PubMed ID: 35131295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Coding RNAs as Key Regulators of Glutaminolysis in Cancer.
    Ortiz-Pedraza Y; Muñoz-Bello JO; Olmedo-Nieva L; Contreras-Paredes A; Martínez-Ramírez I; Langley E; Lizano M
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32326003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutaminolysis: A Hallmark of Cancer Metabolism.
    Yang L; Venneti S; Nagrath D
    Annu Rev Biomed Eng; 2017 Jun; 19():163-194. PubMed ID: 28301735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamine reliance in cell metabolism.
    Yoo HC; Yu YC; Sung Y; Han JM
    Exp Mol Med; 2020 Sep; 52(9):1496-1516. PubMed ID: 32943735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic Targeting of Glutaminolysis as a Novel Strategy to Combat Cancer Stem Cells.
    Kao TW; Chuang YC; Lee HL; Kuo CC; Shen YA
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting glutamine metabolism as a therapeutic strategy for cancer.
    Jin J; Byun JK; Choi YK; Park KG
    Exp Mol Med; 2023 Apr; 55(4):706-715. PubMed ID: 37009798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamine Metabolism in Cancer.
    Li T; Copeland C; Le A
    Adv Exp Med Biol; 2021; 1311():17-38. PubMed ID: 34014532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamine Addiction and Therapeutic Strategies in Lung Cancer.
    Vanhove K; Derveaux E; Graulus GJ; Mesotten L; Thomeer M; Noben JP; Guedens W; Adriaensens P
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30634602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical role of glutamine metabolism in cardiomyocytes under oxidative stress.
    Watanabe K; Nagao M; Toh R; Irino Y; Shinohara M; Iino T; Yoshikawa S; Tanaka H; Satomi-Kobayashi S; Ishida T; Hirata KI
    Biochem Biophys Res Commun; 2021 Jan; 534():687-693. PubMed ID: 33213841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic targeting of glutaminolysis as an essential strategy to combat cancer.
    Matés JM; Di Paola FJ; Campos-Sandoval JA; Mazurek S; Márquez J
    Semin Cell Dev Biol; 2020 Feb; 98():34-43. PubMed ID: 31100352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis.
    Daye D; Wellen KE
    Semin Cell Dev Biol; 2012 Jun; 23(4):362-9. PubMed ID: 22349059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From Krebs to clinic: glutamine metabolism to cancer therapy.
    Altman BJ; Stine ZE; Dang CV
    Nat Rev Cancer; 2016 Oct; 16(10):619-34. PubMed ID: 27492215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutaminolysis as a target for cancer therapy.
    Jin L; Alesi GN; Kang S
    Oncogene; 2016 Jul; 35(28):3619-25. PubMed ID: 26592449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor suppressor NDRG2 inhibits glycolysis and glutaminolysis in colorectal cancer cells by repressing c-Myc expression.
    Xu X; Li J; Sun X; Guo Y; Chu D; Wei L; Li X; Yang G; Liu X; Yao L; Zhang J; Shen L
    Oncotarget; 2015 Sep; 6(28):26161-76. PubMed ID: 26317652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner.
    Wang YQ; Wang HL; Xu J; Tan J; Fu LN; Wang JL; Zou TH; Sun DF; Gao QY; Chen YX; Fang JY
    Nat Commun; 2018 Feb; 9(1):545. PubMed ID: 29416026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis.
    DeBerardinis RJ; Mancuso A; Daikhin E; Nissim I; Yudkoff M; Wehrli S; Thompson CB
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19345-50. PubMed ID: 18032601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting Glutamine Metabolism in Prostate Cancer.
    Bhowmick N; Posadas E; Ellis L; Freedland SJ; Vizio DD; Freeman MR; Theodorescu D; Figlin R; Gong J
    Front Biosci (Elite Ed); 2023 Jan; 15(1):2. PubMed ID: 36959101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Colorectal Cancer Cells With Mutant KRAS, SLC25A22-Mediated Glutaminolysis Reduces DNA Demethylation to Increase WNT Signaling, Stemness, and Drug Resistance.
    Wong CC; Xu J; Bian X; Wu JL; Kang W; Qian Y; Li W; Chen H; Gou H; Liu D; Yat Luk ST; Zhou Q; Ji F; Chan LS; Shirasawa S; Sung JJ; Yu J
    Gastroenterology; 2020 Dec; 159(6):2163-2180.e6. PubMed ID: 32814111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycolysis, Glutaminolysis, and Fatty Acid Synthesis Are Required for Distinct Stages of Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication.
    Sanchez EL; Pulliam TH; Dimaio TA; Thalhofer AB; Delgado T; Lagunoff M
    J Virol; 2017 May; 91(10):. PubMed ID: 28275189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway.
    Son J; Lyssiotis CA; Ying H; Wang X; Hua S; Ligorio M; Perera RM; Ferrone CR; Mullarky E; Shyh-Chang N; Kang Y; Fleming JB; Bardeesy N; Asara JM; Haigis MC; DePinho RA; Cantley LC; Kimmelman AC
    Nature; 2013 Apr; 496(7443):101-5. PubMed ID: 23535601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.