These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 35131398)

  • 1. The rodent medial prefrontal cortex and associated circuits in orchestrating adaptive behavior under variable demands.
    Howland JG; Ito R; Lapish CC; Villaruel FR
    Neurosci Biobehav Rev; 2022 Apr; 135():104569. PubMed ID: 35131398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortico-Striatal Control over Adaptive Goal-Directed Responding Elicited by Cues Signaling Sucrose Reward or Punishment.
    Hamel L; Cavdaroglu B; Yeates D; Nguyen D; Riaz S; Patterson D; Khan N; Kirolos N; Roper K; Ha QA; Ito R
    J Neurosci; 2022 May; 42(18):3811-3822. PubMed ID: 35351827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential processing of decision information in subregions of rodent medial prefrontal cortex.
    Diehl GW; Redish AD
    Elife; 2023 Jan; 12():. PubMed ID: 36652289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prefrontal cortical and nucleus accumbens contributions to discriminative conditioned suppression of reward-seeking.
    Piantadosi PT; Yeates DCM; Floresco SB
    Learn Mem; 2020 Oct; 27(10):429-440. PubMed ID: 32934096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential Effects of Dorsal and Ventral Medial Prefrontal Cortex Inactivation during Natural Reward Seeking, Extinction, and Cue-Induced Reinstatement.
    Caballero JP; Scarpa GB; Remage-Healey L; Moorman DE
    eNeuro; 2019; 6(5):. PubMed ID: 31519696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prelimbic and Infralimbic Prefrontal Regulation of Active and Inhibitory Avoidance and Reward-Seeking.
    Capuzzo G; Floresco SB
    J Neurosci; 2020 Jun; 40(24):4773-4787. PubMed ID: 32393535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of dopamine projections from ventral tegmental area to nucleus accumbens and medial prefrontal cortex in reinforcement behaviors assessed using optogenetic manipulation.
    Han X; Jing MY; Zhao TY; Wu N; Song R; Li J
    Metab Brain Dis; 2017 Oct; 32(5):1491-1502. PubMed ID: 28523568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. c-Fos induction in mesotelencephalic dopamine pathway projection targets and dorsal striatum following oral intake of sugars and fats in rats.
    Dela Cruz JA; Coke T; Karagiorgis T; Sampson C; Icaza-Cukali D; Kest K; Ranaldi R; Bodnar RJ
    Brain Res Bull; 2015 Feb; 111():9-19. PubMed ID: 25460109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extinction circuits for fear and addiction overlap in prefrontal cortex.
    Peters J; Kalivas PW; Quirk GJ
    Learn Mem; 2009 May; 16(5):279-88. PubMed ID: 19380710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic interaction between medial prefrontal cortex and nucleus accumbens as a function of both motivational state and reinforcer magnitude: a c-Fos immunocytochemistry study.
    Moscarello JM; Ben-Shahar O; Ettenberg A
    Brain Res; 2007 Sep; 1169():69-76. PubMed ID: 17706947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization of connections between the amygdala, medial prefrontal cortex, and lateral hypothalamus: a single and double retrograde tracing study in rats.
    Reppucci CJ; Petrovich GD
    Brain Struct Funct; 2016 Jul; 221(6):2937-62. PubMed ID: 26169110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional heterogeneity of the rat medial prefrontal cortex: effects of discrete subarea-specific lesions on drug-induced conditioned place preference and behavioural sensitization.
    Tzschentke TM; Schmidt WJ
    Eur J Neurosci; 1999 Nov; 11(11):4099-109. PubMed ID: 10583498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat.
    Hoover WB; Vertes RP
    Brain Struct Funct; 2007 Sep; 212(2):149-79. PubMed ID: 17717690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning-induced intrinsic and synaptic plasticity in the rodent medial prefrontal cortex.
    Porter JT; Sepulveda-Orengo MT
    Neurobiol Learn Mem; 2020 Mar; 169():107117. PubMed ID: 31765801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential roles of medial prefrontal subregions in the regulation of drug seeking.
    Moorman DE; James MH; McGlinchey EM; Aston-Jones G
    Brain Res; 2015 Dec; 1628(Pt A):130-46. PubMed ID: 25529632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medial prefrontal cortex inactivation attenuates the diurnal rhythm in amphetamine reward.
    Baltazar RM; Coolen LM; Webb IC
    Neuroscience; 2014 Jan; 258():204-10. PubMed ID: 24239716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sex differences in the rodent medial prefrontal cortex - What Do and Don't we know?
    Laine MA; Greiner EM; Shansky RM
    Neuropharmacology; 2024 May; 248():109867. PubMed ID: 38387553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trace Fear Conditioning Differentially Modulates Intrinsic Excitability of Medial Prefrontal Cortex-Basolateral Complex of Amygdala Projection Neurons in Infralimbic and Prelimbic Cortices.
    Song C; Ehlers VL; Moyer JR
    J Neurosci; 2015 Sep; 35(39):13511-24. PubMed ID: 26424895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions of the amygdala and medial prefrontal cortex to incentive cue responding.
    Ishikawa A; Ambroggi F; Nicola SM; Fields HL
    Neuroscience; 2008 Aug; 155(3):573-84. PubMed ID: 18640246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociable roles for the ventral and dorsal medial prefrontal cortex in cue-guided risk/reward decision making.
    van Holstein M; Floresco SB
    Neuropsychopharmacology; 2020 Mar; 45(4):683-693. PubMed ID: 31652433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.