These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35131462)

  • 1. Aqueous phase reforming of birch and pine hemicellulose hydrolysates.
    Aho A; Alvear M; Ahola J; Kangas J; Tanskanen J; Simakova I; Santos JL; Eränen K; Salmi T; Murzin DY; Grénman H
    Bioresour Technol; 2022 Mar; 348():126809. PubMed ID: 35131462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sibunit-Supported Mono- and Bimetallic Catalysts Used in Aqueous-Phase Reforming of Xylitol.
    Godina LI; Kirilin AV; Tokarev AV; Simakova IL; Murzin DY
    Ind Eng Chem Res; 2018 Feb; 57(6):2050-2067. PubMed ID: 30270980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formic acid aided hot water extraction of hemicellulose from European silver birch (Betula pendula) sawdust.
    Goldmann WM; Ahola J; Mikola M; Tanskanen J
    Bioresour Technol; 2017 May; 232():176-182. PubMed ID: 28231535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous aqueous phase reforming of a synthetic brewery wastewater with Pt/C and PtRe/C catalysts for biohydrogen production.
    Oliveira AS; Cordero-Lanzac T; Baeza JA; Calvo L; Heras F; Rodriguez JJ; Gilarranz MA
    Chemosphere; 2021 Oct; 281():130885. PubMed ID: 34020197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the Water Phase State on the Thermodynamics of Aqueous-Phase Reforming for Hydrogen Production.
    Ripken RM; Meuldijk J; Gardeniers JGE; Le Gac S
    ChemSusChem; 2017 Dec; 10(24):4909-4913. PubMed ID: 28691770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards stable catalysts for aqueous phase conversion of ethylene glycol for renewable hydrogen.
    Koichumanova K; Vikla AK; de Vlieger DJ; Seshan K; Mojet BL; Lefferts L
    ChemSusChem; 2013 Sep; 6(9):1717-23. PubMed ID: 24023052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic Reforming of the Aqueous Phase Derived from Diluted Hydrogen Peroxide Oxidation of Waste Polyethylene for Hydrogen Production.
    Su H; Li T; Zhu L; Wang S
    ChemSusChem; 2021 Oct; 14(19):4270-4279. PubMed ID: 34101995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of CeO₂ addition to Al₂O₃ supports for Pt catalysts on the aqueous-phase reforming of glycerol.
    Rahman MM; Church TL; Minett AI; Harris AT
    ChemSusChem; 2013 Jun; 6(6):1006-13. PubMed ID: 23616477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen production through aqueous-phase reforming of ethylene glycol in a washcoated microchannel.
    D'Angelo MF; Ordomsky V; Paunovic V; van der Schaaf J; Schouten JC; Nijhuis TA
    ChemSusChem; 2013 Sep; 6(9):1708-16. PubMed ID: 23592593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen from ethanol reforming with aqueous fraction of pine pyrolysis oil with and without chemical looping.
    Zin RM; Ross AB; Jones JM; Dupont V
    Bioresour Technol; 2015 Jan; 176():257-66. PubMed ID: 25461011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of hemicellulose pre-extraction for bioconversion on birch Kraft pulp properties.
    Helmerius J; von Walter JV; Rova U; Berglund KA; Hodge DB
    Bioresour Technol; 2010 Aug; 101(15):5996-6005. PubMed ID: 20378336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renewable hydrogen by aqueous-phase reforming of glucose.
    Davda RR; Dumesic JA
    Chem Commun (Camb); 2004 Jan; (1):36-7. PubMed ID: 14737320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A one-pot method for the selective conversion of hemicellulose from crop waste into C5 sugars and furfural by using solid acid catalysts.
    Sahu R; Dhepe PL
    ChemSusChem; 2012 Apr; 5(4):751-61. PubMed ID: 22411884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced membrane filtration of wood hydrolysates for hemicelluloses recovery by pretreatment with polymeric adsorbents.
    Koivula E; Kallioinen M; Sainio T; Antón E; Luque S; Mänttäri M
    Bioresour Technol; 2013 Sep; 143():275-81. PubMed ID: 23810949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-assisted catalytic depolymerization of lignin from birch sawdust to produce phenolic monomers utilizing a hydrogen-free strategy.
    Liu X; Bouxin FP; Fan J; Budarin VL; Hu C; Clark JH
    J Hazard Mater; 2021 Jan; 402():123490. PubMed ID: 32712365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic conversion of nonfood woody biomass solids to organic liquids.
    Barta K; Ford PC
    Acc Chem Res; 2014 May; 47(5):1503-12. PubMed ID: 24745655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of soil temperature and elevated atmospheric CO2 concentration on gas exchange, in vivo carboxylation and chlorophyll fluorescence in jack pine and white birch seedlings.
    Zhang S; Dang QL
    Tree Physiol; 2005 May; 25(5):523-31. PubMed ID: 15741153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.
    Maugans CB; Akgerman A
    Water Res; 2003 Jan; 37(2):319-28. PubMed ID: 12502061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Nickel- and Magnetite-Promoted Carbonized Cellulose Bead-Supported Bimetallic Pd-Pt Catalysts for Hydrogenation of Chlorate Ions in Aqueous Solution.
    Sikora E; Koncz-Horváth D; Muránszky G; Kristály F; Fiser B; Viskolcz B; Vanyorek L
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous-phase reforming of the low-boiling fraction of rice husk pyrolyzed bio-oil in the presence of platinum catalyst for hydrogen production.
    Pan C; Chen A; Liu Z; Chen P; Lou H; Zheng X
    Bioresour Technol; 2012 Dec; 125():335-9. PubMed ID: 23069602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.