BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 35131714)

  • 1. The inhibitory effects of natural antioxidants on protein glycation as well as aggregation induced by methylglyoxal and underlying mechanisms.
    Liu H; Huo X; Wang S; Yin Z
    Colloids Surf B Biointerfaces; 2022 Apr; 212():112360. PubMed ID: 35131714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ability of resveratrol to inhibit advanced glycation end product formation and carbohydrate-hydrolyzing enzyme activity, and to conjugate methylglyoxal.
    Shen Y; Xu Z; Sheng Z
    Food Chem; 2017 Feb; 216():153-60. PubMed ID: 27596404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The inhibitory effect of the catechin structure on advanced glycation end product formation in alcoholic media.
    Wu Q; Tang S; Zhang L; Xiao J; Luo Q; Chen Y; Zhou M; Feng N; Wang C
    Food Funct; 2020 Jun; 11(6):5396-5408. PubMed ID: 32469349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vitexin Inhibits Protein Glycation through Structural Protection, Methylglyoxal Trapping, and Alteration of Glycation Site.
    Ni M; Song X; Pan J; Gong D; Zhang G
    J Agric Food Chem; 2021 Mar; 69(8):2462-2476. PubMed ID: 33600185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of Methylglyoxal-Induced Histone H1 N
    Yang L; Li X; Wu Z; Feng C; Zhang T; Dai S; Dong Q
    J Agric Food Chem; 2018 Jun; 66(23):5812-5820. PubMed ID: 29758984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effect of epicatechin gallate on protein glycation.
    Wu X; Zhang G; Hu X; Pan J; Liao Y; Ding H
    Food Res Int; 2019 Aug; 122():230-240. PubMed ID: 31229076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Penta-O-galloyl-β-d-glucose inhibits the formation of advanced glycation end-products (AGEs): A mechanistic investigation.
    Peng J; Liang G; Wen W; Qiu Z; Huang W; Wang Q; Xiao G
    Int J Biol Macromol; 2023 May; 237():124161. PubMed ID: 36965563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential of Vasoprotectives to Inhibit Non-Enzymatic Protein Glycation, and Reactive Carbonyl and Oxygen Species Uptake.
    Bednarska K; Fecka I
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vitro Antiglycation and Methylglyoxal Trapping Effect of Peppermint Leaf (
    Fecka I; Bednarska K; Kowalczyk A
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protective role of Clitoria ternatea L. flower extract on methylglyoxal-induced protein glycation and oxidative damage to DNA.
    Chayaratanasin P; Adisakwattana S; Thilavech T
    BMC Complement Med Ther; 2021 Mar; 21(1):80. PubMed ID: 33648500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal.
    Li X; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2014 Dec; 62(50):12152-8. PubMed ID: 25412188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethyl Pyruvate Prevents Renal Damage Induced by Methylglyoxal-Derived Advanced Glycation End Products.
    Jung E; Kang WS; Jo K; Kim J
    J Diabetes Res; 2019; 2019():4058280. PubMed ID: 31737683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Polyphenol Anthocyanin-Enriched Extracts of Blackberry, Black Raspberry, Blueberry, Cranberry, Red Raspberry, and Strawberry for Free Radical Scavenging, Reactive Carbonyl Species Trapping, Anti-Glycation, Anti-β-Amyloid Aggregation, and Microglial Neuroprotective Effects.
    Ma H; Johnson SL; Liu W; DaSilva NA; Meschwitz S; Dain JA; Seeram NP
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29401686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phloretin and its methylglyoxal adduct: Implications against advanced glycation end products-induced inflammation in endothelial cells.
    Zhou Q; Gong J; Wang M
    Food Chem Toxicol; 2019 Jul; 129():291-300. PubMed ID: 31059746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of Methylglyoxal-Induced AGEs/RAGE Expression Contributes to Dermal Protection by N-Acetyl-L-Cysteine.
    Yang CT; Meng FH; Chen L; Li X; Cen LJ; Wen YH; Li CC; Zhang H
    Cell Physiol Biochem; 2017; 41(2):742-754. PubMed ID: 28214842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apigenin and its methylglyoxal-adduct inhibit advanced glycation end products-induced oxidative stress and inflammation in endothelial cells.
    Zhou Q; Cheng KW; Gong J; Li ETS; Wang M
    Biochem Pharmacol; 2019 Aug; 166():231-241. PubMed ID: 31158339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactive compounds isolated from apple, tea, and ginger protect against dicarbonyl induced stress in cultured human retinal epithelial cells.
    Sampath C; Zhu Y; Sang S; Ahmedna M
    Phytomedicine; 2016 Feb; 23(2):200-13. PubMed ID: 26926182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (+)-Catechin mitigates impairment in insulin secretion and beta cell damage in methylglyoxal-induced pancreatic beta cells.
    Anaga N; Lekshmy K; Purushothaman J
    Mol Biol Rep; 2024 Mar; 51(1):434. PubMed ID: 38520585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro evaluation of anti-methylglyoxal/glyoxal activity of three phytosterols using glycated bovine serum albumin models.
    Sobhy R; Shen Q; Abd-Elrahman AA; Khalifa I; Liang H; Li B
    Steroids; 2020 Sep; 161():108678. PubMed ID: 32565405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artichoke (Cynara cardunculus L. var. scolymus) waste as a natural source of carbonyl trapping and antiglycative agents.
    Maietta M; Colombo R; Lavecchia R; Sorrenti M; Zuorro A; Papetti A
    Food Res Int; 2017 Oct; 100(Pt 1):780-790. PubMed ID: 28873750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.