These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35132058)

  • 1. Robust but weak winter atmospheric circulation response to future Arctic sea ice loss.
    Smith DM; Eade R; Andrews MB; Ayres H; Clark A; Chripko S; Deser C; Dunstone NJ; GarcĂ­a-Serrano J; Gastineau G; Graff LS; Hardiman SC; He B; Hermanson L; Jung T; Knight J; Levine X; Magnusdottir G; Manzini E; Matei D; Mori M; Msadek R; Ortega P; Peings Y; Scaife AA; Screen JA; Seabrook M; Semmler T; Sigmond M; Streffing J; Sun L; Walsh A
    Nat Commun; 2022 Feb; 13(1):727. PubMed ID: 35132058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ARCTIC CHANGE AND POSSIBLE INFLUENCE ON MID-LATITUDE CLIMATE AND WEATHER: A US CLIVAR White Paper.
    Cohen J; Zhang X; Francis J; Jung T; Kwok R; Overland J; Ballinger T; Blackport R; Bhatt US; Chen H; Coumou D; Feldstein S; Handorf D; Hell M; Henderson G; Ionita M; Kretschmer M; Laliberte F; Lee S; Linderholm H; Maslowski W; Rigor I; Routson C; Screen J; Semmler T; Singh D; Smith D; Stroeve J; Taylor PC; Vihma T; Wang M; Wang S; Wu Y; Wendisch M; Yoon J
    US CLIVAR Rep; 2018 Mar; n/a():. PubMed ID: 31633127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of Arctic sea ice loss on mid-Holocene climate.
    Park HS; Kim SJ; Seo KH; Stewart AL; Kim SY; Son SW
    Nat Commun; 2018 Nov; 9(1):4571. PubMed ID: 30385755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weakening of the stratospheric polar vortex by Arctic sea-ice loss.
    Kim BM; Son SW; Min SK; Jeong JH; Kim SJ; Zhang X; Shim T; Yoon JH
    Nat Commun; 2014 Sep; 5():4646. PubMed ID: 25181390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The missing Northern European winter cooling response to Arctic sea ice loss.
    Screen JA
    Nat Commun; 2017 Mar; 8():14603. PubMed ID: 28262679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multimodel Evidence for an Atmospheric Circulation Response to Arctic Sea Ice Loss in the CMIP5 Future Projections.
    Zappa G; Pithan F; Shepherd TG
    Geophys Res Lett; 2018 Jan; 45(2):1011-1019. PubMed ID: 29576667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical mechanisms of Arctic amplification.
    Dethloff K; Handorf D; Jaiser R; Rinke A; Klinghammer P
    Ann N Y Acad Sci; 2019 Jan; 1436(1):184-194. PubMed ID: 29754421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the recent winter Arctic sea ice loss in short-term simulations of a regional atmospheric model.
    Cho H; Kug JS; Jun SY
    Sci Rep; 2022 May; 12(1):8901. PubMed ID: 35618755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Warm hole in Pacific Arctic sea ice cover forced mid-latitude Northern Hemisphere cooling during winter 2017-18.
    Tachibana Y; Komatsu KK; Alexeev VA; Cai L; Ando Y
    Sci Rep; 2019 Apr; 9(1):5567. PubMed ID: 30944347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of declining Arctic sea ice on winter snowfall.
    Liu J; Curry JA; Wang H; Song M; Horton RM
    Proc Natl Acad Sci U S A; 2012 Mar; 109(11):4074-9. PubMed ID: 22371563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The central role of diminishing sea ice in recent Arctic temperature amplification.
    Screen JA; Simmonds I
    Nature; 2010 Apr; 464(7293):1334-7. PubMed ID: 20428168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent autumn sea ice loss in the eastern Arctic enhanced by summer Asian-Pacific Oscillation.
    Zhou B; Song Z; Yin Z; Xu X; Sun B; Hsu P; Chen H
    Nat Commun; 2024 Mar; 15(1):2798. PubMed ID: 38555365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of Arctic amplification on mid-latitude summer circulation.
    Coumou D; Di Capua G; Vavrus S; Wang L; Wang S
    Nat Commun; 2018 Aug; 9(1):2959. PubMed ID: 30127423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence.
    Amstrup SC; Deweaver ET; Douglas DC; Marcot BG; Durner GM; Bitz CM; Bailey DA
    Nature; 2010 Dec; 468(7326):955-8. PubMed ID: 21164484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Arctic sea-ice loss on the Greenland ice sheet climate.
    Sellevold R; Lenaerts JTM; Vizcaino M
    Clim Dyn; 2022; 58(1-2):179-193. PubMed ID: 35125662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatio-temporal change and variability of Barents-Kara sea ice, in the Arctic: Ocean and atmospheric implications.
    Kumar A; Yadav J; Mohan R
    Sci Total Environ; 2021 Jan; 753():142046. PubMed ID: 32892004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arctic amplification is caused by sea-ice loss under increasing CO
    Dai A; Luo D; Song M; Liu J
    Nat Commun; 2019 Jan; 10(1):121. PubMed ID: 30631051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. North Atlantic Oscillation in winter is largely insensitive to autumn Barents-Kara sea ice variability.
    Siew PYF; Li C; Ting M; Sobolowski SP; Wu Y; Chen X
    Sci Adv; 2021 Jul; 7(31):. PubMed ID: 34330704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seal body condition and atmospheric circulation patterns influence polar bear body condition, recruitment, and feeding ecology in the Chukchi Sea.
    Rode KD; Regehr EV; Bromaghin JF; Wilson RR; St Martin M; Crawford JA; Quakenbush LT
    Glob Chang Biol; 2021 Jun; 27(12):2684-2701. PubMed ID: 33644944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Memory effects of Eurasian land processes cause enhanced cooling in response to sea ice loss.
    Nakamura T; Yamazaki K; Sato T; Ukita J
    Nat Commun; 2019 Nov; 10(1):5111. PubMed ID: 31704932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.