These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35132086)

  • 21. Mesoporous Ultrathin In
    Yan G; Dong Y; Wu T; Xing S; Wang X
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52912-52920. PubMed ID: 34709787
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding the varying mechanisms between the conformal interlayer and overlayer in the silicon/hematite dual-absorber photoanode for solar water splitting.
    Zhou Z; Li L; Niu Y; Song H; Xing XS; Guo Z; Wu S
    Dalton Trans; 2021 Feb; 50(8):2936-2944. PubMed ID: 33555279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Maximizing Oxygen Evolution Performance on a Transparent NiFeO
    Kawase Y; Higashi T; Katayama M; Domen K; Takanabe K
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16317-16325. PubMed ID: 33797878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interfacial engineering of 1D/2D heterostructured photoanode for efficient photoelectrochemical water splitting.
    Wang Z; Qin Y; Wu X; He K; Li X; Wang J
    Nanotechnology; 2022 Sep; 33(49):. PubMed ID: 35977454
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interface and surface engineering of hematite photoanode for efficient solar water oxidation.
    Chen X; Fu Y; Hong L; Kong T; Shi X; Wang G; Qu L; Shen S
    J Chem Phys; 2020 Jun; 152(24):244707. PubMed ID: 32610948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bridging the transport pathway of charge carriers in a Ta3N5 nanotube array photoanode for solar water splitting.
    Zhang P; Wang T; Zhang J; Chang X; Gong J
    Nanoscale; 2015 Aug; 7(31):13153-8. PubMed ID: 26061973
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly Active GaN-Stabilized Ta
    Zhong M; Hisatomi T; Sasaki Y; Suzuki S; Teshima K; Nakabayashi M; Shibata N; Nishiyama H; Katayama M; Yamada T; Domen K
    Angew Chem Int Ed Engl; 2017 Apr; 56(17):4739-4743. PubMed ID: 28323376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interface-engineered Z-scheme of BiVO
    Mane P; Bae H; Burungale V; Lee SW; Misra M; Parbat H; Kadam AN; Ha JS
    Chemosphere; 2022 Dec; 308(Pt 1):136166. PubMed ID: 36037961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-Dimensional WO
    Wang Y; Tian W; Chen L; Cao F; Guo J; Li L
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40235-40243. PubMed ID: 29067799
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In Situ Synthesis of α-Fe
    Lei B; Xu D; Wei B; Xie T; Xiao C; Jin W; Xu L
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4785-4795. PubMed ID: 33430580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoporous Ta
    Krisna Das P; Arunachalam M; Subhash KR; Seo YJ; Ahn KS; Ha JS; Kang SH
    Dalton Trans; 2020 Nov; 49(42):15023-15033. PubMed ID: 33095219
    [TBL] [Abstract][Full Text] [Related]  

  • 32. BiVO
    Xia L; Li J; Bai J; Li L; Chen S; Zhou B
    Nanomicro Lett; 2018; 10(1):11. PubMed ID: 30393660
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterizing Density and Spatial Distribution of Trap States in Ta
    Rudd PN; Tereniak SJ; Lopez R
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):7969-7977. PubMed ID: 36734937
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells.
    Han L; Abdi FF; van de Krol R; Liu R; Huang Z; Lewerenz HJ; Dam B; Zeman M; Smets AH
    ChemSusChem; 2014 Oct; 7(10):2832-8. PubMed ID: 25138735
    [TBL] [Abstract][Full Text] [Related]  

  • 35. First-Principles Study of the Band Diagrams and Schottky-Type Barrier Heights of Aqueous Ta
    Watanabe E; Ushiyama H; Yamashita K
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9559-9566. PubMed ID: 28251847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of NiCo
    Wang H; Wang Y; Lin Y; Huang X; García-Tecedor M; de la Peña O'Shea VA; Murrill C; Lazarov VK; Oropeza FE; Zhang KHL
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28739-28746. PubMed ID: 37253189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ge-mediated modification in Ta3N5 photoelectrodes with enhanced charge transport for solar water splitting.
    Feng J; Cao D; Wang Z; Luo W; Wang J; Li Z; Zou Z
    Chemistry; 2014 Dec; 20(49):16384-90. PubMed ID: 25314682
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature Effect on Photoelectrochemical Water Splitting: A Model Study Based on BiVO
    Zhou C; Zhang L; Tong X; Liu M
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61227-61236. PubMed ID: 34914379
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activating a TiO
    Liu C; Chen L; Su X; Chen S; Zhang J; Yang H; Pei Y
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2316-2325. PubMed ID: 34965083
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting.
    Zhen C; Wang L; Liu G; Lu GQ; Cheng HM
    Chem Commun (Camb); 2013 Apr; 49(29):3019-21. PubMed ID: 23463440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.