These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35132139)

  • 1. A highly accurate metadynamics-based Dissociation Free Energy method to calculate protein-protein and protein-ligand binding potencies.
    Wang J; Ishchenko A; Zhang W; Razavi A; Langley D
    Sci Rep; 2022 Feb; 12(1):2024. PubMed ID: 35132139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining Machine Learning and Enhanced Sampling Techniques for Efficient and Accurate Calculation of Absolute Binding Free Energies.
    Evans R; Hovan L; Tribello GA; Cossins BP; Estarellas C; Gervasio FL
    J Chem Theory Comput; 2020 Jul; 16(7):4641-4654. PubMed ID: 32427471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular motions in drug design: the coming age of the metadynamics method.
    Biarnés X; Bongarzone S; Vargiu AV; Carloni P; Ruggerone P
    J Comput Aided Mol Des; 2011 May; 25(5):395-402. PubMed ID: 21327922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand Gaussian Accelerated Molecular Dynamics 3 (LiGaMD3): Improved Calculations of Binding Thermodynamics and Kinetics of Both Small Molecules and Flexible Peptides.
    Wang J; Miao Y
    J Chem Theory Comput; 2024 Jul; 20(14):5829-5841. PubMed ID: 39002136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of relative free energies of binding using pre-computed ensembles based on the single-step free energy perturbation and the site-identification by Ligand competitive saturation approaches.
    Raman EP; Lakkaraju SK; Denny RA; MacKerell AD
    J Comput Chem; 2017 Jun; 38(15):1238-1251. PubMed ID: 27782307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards accurate free energy calculations in ligand protein-binding studies.
    Steinbrecher T; Labahn A
    Curr Med Chem; 2010; 17(8):767-85. PubMed ID: 20088755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand binding free-energy calculations with funnel metadynamics.
    Raniolo S; Limongelli V
    Nat Protoc; 2020 Sep; 15(9):2837-2866. PubMed ID: 32814837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient States and Barriers from Molecular Simulations and the Milestoning Theory: Kinetics in Ligand-Protein Recognition and Compound Design.
    Tang Z; Chen SH; Chang CA
    J Chem Theory Comput; 2020 Mar; 16(3):1882-1895. PubMed ID: 32031801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absolute Binding Free Energy Calculation and Design of a Subnanomolar Inhibitor of Phosphodiesterase-10.
    Li Z; Huang Y; Wu Y; Chen J; Wu D; Zhan CG; Luo HB
    J Med Chem; 2019 Feb; 62(4):2099-2111. PubMed ID: 30689375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-Ligand Binding Free Energy Calculations with FEP.
    Wang L; Chambers J; Abel R
    Methods Mol Biol; 2019; 2022():201-232. PubMed ID: 31396905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alchemical free energy calculations via metadynamics: Application to the theophylline-RNA aptamer complex.
    Tanida Y; Matsuura A
    J Comput Chem; 2020 Jul; 41(20):1804-1819. PubMed ID: 32449538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative Binding Free Energy Calculations Applied to Protein Homology Models.
    Cappel D; Hall ML; Lenselink EB; Beuming T; Qi J; Bradner J; Sherman W
    J Chem Inf Model; 2016 Dec; 56(12):2388-2400. PubMed ID: 28024402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical Study of Protein-Ligand Interactions Using the Molecules-in-Molecules Fragmentation-Based Method.
    Thapa B; Beckett D; Erickson J; Raghavachari K
    J Chem Theory Comput; 2018 Oct; 14(10):5143-5155. PubMed ID: 30265003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculate protein-ligand binding affinities with the extended linear interaction energy method: application on the Cathepsin S set in the D3R Grand Challenge 3.
    He X; Man VH; Ji B; Xie XQ; Wang J
    J Comput Aided Mol Des; 2019 Jan; 33(1):105-117. PubMed ID: 30218199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding free energies in the SAMPL5 octa-acid host-guest challenge calculated with DFT-D3 and CCSD(T).
    Caldararu O; Olsson MA; Riplinger C; Neese F; Ryde U
    J Comput Aided Mol Des; 2017 Jan; 31(1):87-106. PubMed ID: 27600554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pre-Exascale Computing of Protein-Ligand Binding Free Energies with Open Source Software for Drug Design.
    Gapsys V; Hahn DF; Tresadern G; Mobley DL; Rampp M; de Groot BL
    J Chem Inf Model; 2022 Mar; 62(5):1172-1177. PubMed ID: 35191702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can One Trust Kinetic and Thermodynamic Observables from Biased Metadynamics Simulations?: Detailed Quantitative Benchmarks on Millimolar Drug Fragment Dissociation.
    Pramanik D; Smith Z; Kells A; Tiwary P
    J Phys Chem B; 2019 May; 123(17):3672-3678. PubMed ID: 30974941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning Potential Functions to Host-Guest Binding Data.
    Setiadi J; Boothroyd S; Slochower DR; Dotson DL; Thompson MW; Wagner JR; Wang LP; Gilson MK
    J Chem Theory Comput; 2024 Jan; 20(1):239-252. PubMed ID: 38147689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Silico Prediction of Ligand Binding Energies in Multiple Therapeutic Targets and Diverse Ligand Sets-A Case Study on BACE1, TYK2, HSP90, and PERK Proteins.
    Frush EH; Sekharan S; Keinan S
    J Phys Chem B; 2017 Aug; 121(34):8142-8148. PubMed ID: 28759991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated, Accurate, and Scalable Relative Protein-Ligand Binding Free-Energy Calculations Using Lambda Dynamics.
    Raman EP; Paul TJ; Hayes RL; Brooks CL
    J Chem Theory Comput; 2020 Dec; 16(12):7895-7914. PubMed ID: 33201701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.