These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35132791)

  • 1. Detecting RNA-RNA interactome.
    Singh S; Shyamal S; Panda AC
    Wiley Interdiscip Rev RNA; 2022 Sep; 13(5):e1715. PubMed ID: 35132791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of atrial fibrillation-related circular RNAs and constructing the integrative regulatory network of circular RNAs, microRNAs and mRNAs by bioinformatics analysis.
    Zhai Z; Qin T; Liu F; Han L; Zhou H; Li Q; Xia Z; Li J
    Cell Mol Biol (Noisy-le-grand); 2020 Oct; 66(7):161-168. PubMed ID: 33287936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circular RNAs Repertoire and Expression Profile during
    Babaei S; Singh MB; Bhalla PL
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CircPro: an integrated tool for the identification of circRNAs with protein-coding potential.
    Meng X; Chen Q; Zhang P; Chen M
    Bioinformatics; 2017 Oct; 33(20):3314-3316. PubMed ID: 29028266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The expanding regulatory mechanisms and cellular functions of circular RNAs.
    Chen LL
    Nat Rev Mol Cell Biol; 2020 Aug; 21(8):475-490. PubMed ID: 32366901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic profiling and functional prediction reveal aberrant expression of circular RNAs during osteogenic differentiation in human umbilical cord mesenchymal stromal cells.
    Su C; Zheng X; He Y; Long L; Chen W
    Sci Rep; 2021 Oct; 11(1):19881. PubMed ID: 34615899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Profiling and bioinformatics analyses reveal differential expression of circular RNA in tongue cancer revealed by high-throughput sequencing.
    Qiu X; Ke X; Ma H; Han L; Chen Q; Zhang S; Da P; Wu H
    J Cell Biochem; 2019 Mar; 120(3):4102-4112. PubMed ID: 30269358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dawn of the in vivo RNA structurome and interactome.
    Kwok CK
    Biochem Soc Trans; 2016 Oct; 44(5):1395-1410. PubMed ID: 27911722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Mapping of Eukaryotic RNA Interactomes Reveals Principles of Higher-Order Organization and Regulation.
    Aw JG; Shen Y; Wilm A; Sun M; Lim XN; Boon KL; Tapsin S; Chan YS; Tan CP; Sim AY; Zhang T; Susanto TT; Fu Z; Nagarajan N; Wan Y
    Mol Cell; 2016 May; 62(4):603-17. PubMed ID: 27184079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Throughput Data Reveals Novel Circular RNAs via Competitive Endogenous RNA Networks Associated with Human Intracranial Aneurysms.
    Huang Q; Huang QY; Sun Y; Wu S
    Med Sci Monit; 2019 Jun; 25():4819-4830. PubMed ID: 31254341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. circlncRNAnet: an integrated web-based resource for mapping functional networks of long or circular forms of noncoding RNAs.
    Wu SM; Liu H; Huang PJ; Chang IY; Lee CC; Yang CY; Tsai WS; Tan BC
    Gigascience; 2018 Jan; 7(1):1-10. PubMed ID: 29194536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. seekCRIT: Detecting and characterizing differentially expressed circular RNAs using high-throughput sequencing data.
    Chaabane M; Andreeva K; Hwang JY; Kook TL; Park JW; Cooper NGF
    PLoS Comput Biol; 2020 Oct; 16(10):e1008338. PubMed ID: 33079938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of RNA fragments using high-throughput interactome screening.
    Jackowiak P; Lis A; Luczak M; Stolarek I; Figlerowicz M
    J Proteomics; 2019 Feb; 193():173-183. PubMed ID: 30339940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circular RNAs regulate its parental genes transcription in the AD mouse model using two methods of library construction.
    Ma N; Tie C; Yu B; Zhang W; Wan J
    FASEB J; 2020 Aug; 34(8):10342-10356. PubMed ID: 32530085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput circular RNA sequencing reveals the profiles of circular RNA in non-cirrhotic hepatocellular carcinoma.
    Li H; Xu L; Yi P; Li L; Yan T; Xie L; Zhu Z
    BMC Cancer; 2022 Aug; 22(1):857. PubMed ID: 35931993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in detecting N6-methyladenosine modification in circRNAs.
    Ma L; He LN; Kang S; Gu B; Gao S; Zuo Z
    Methods; 2022 Sep; 205():234-246. PubMed ID: 35878749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SRRM4 Expands the Repertoire of Circular RNAs by Regulating Microexon Inclusion.
    Conn VM; Gabryelska M; Marri S; Stringer BW; Ormsby RJ; Penn T; Poonnoose S; Kichenadasse G; Conn SJ
    Cells; 2020 Nov; 9(11):. PubMed ID: 33207694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentially expressed circular RNAs in a murine asthma model.
    Bao H; Zhou Q; Li Q; Niu M; Chen S; Yang P; Liu Z; Xia L
    Mol Med Rep; 2020 Dec; 22(6):5412-5422. PubMed ID: 33173985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The roles of circRNAs in cancers: Perspectives from molecular functions.
    Cao YZ; Sun JY; Chen YX; Wen CC; Wei L
    Gene; 2021 Jan; 767():145182. PubMed ID: 32991954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into circular RNAs: their biogenesis, detection, and emerging role in cardiovascular disease.
    Ward Z; Pearson J; Schmeier S; Cameron V; Pilbrow A
    RNA Biol; 2021 Dec; 18(12):2055-2072. PubMed ID: 33779499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.