These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 35133381)

  • 1. 3D printed microfluidic devices for lipid bilayer recordings.
    Ogishi K; Osaki T; Morimoto Y; Takeuchi S
    Lab Chip; 2022 Mar; 22(5):890-898. PubMed ID: 35133381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
    Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K
    PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging 3D printing technologies and methodologies for microfluidic development.
    Monia Kabandana GK; Zhang T; Chen C
    Anal Methods; 2022 Aug; 14(30):2885-2906. PubMed ID: 35866586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printed mold leachates in PDMS microfluidic devices.
    de Almeida Monteiro Melo Ferraz M; Nagashima JB; Venzac B; Le Gac S; Songsasen N
    Sci Rep; 2020 Jan; 10(1):994. PubMed ID: 31969661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing.
    Musgrove HB; Catterton MA; Pompano RR
    Anal Chim Acta; 2022 May; 1209():339842. PubMed ID: 35569850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices.
    Li X; Wang M; Davis TP; Zhang L; Qiao R
    Biosensors (Basel); 2024 Jun; 14(6):. PubMed ID: 38920605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell adhesion and proliferation on common 3D printing materials used in stereolithography of microfluidic devices.
    Piironen K; Haapala M; Talman V; Järvinen P; Sikanen T
    Lab Chip; 2020 Jun; 20(13):2372-2382. PubMed ID: 32500123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation and comparison of resin materials in transparent DLP-printing for application in cell culture and organs-on-a-chip.
    Fritschen A; Bell AK; Königstein I; Stühn L; Stark RW; Blaeser A
    Biomater Sci; 2022 Apr; 10(8):1981-1994. PubMed ID: 35262097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic on-chip filtration enabled by direct micro-3D printing on membrane.
    Li H; Raza A; Yuan S; AlMarzooqi F; Fang NX; Zhang T
    Sci Rep; 2022 May; 12(1):8178. PubMed ID: 35581265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging Technologies and Materials for High-Resolution 3D Printing of Microfluidic Chips.
    Kotz F; Helmer D; Rapp BE
    Adv Biochem Eng Biotechnol; 2022; 179():37-66. PubMed ID: 32797271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic devices manufacturing with a stereolithographic printer for biological applications.
    Carnero B; Bao-Varela C; Gómez-Varela AI; Álvarez E; Flores-Arias MT
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112388. PubMed ID: 34579907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Reproducible Physiological Asymmetric Membrane with Freely Diffusing Embedded Proteins in a 3D-Printed Microfluidic Setup.
    Heo P; Ramakrishnan S; Coleman J; Rothman JE; Fleury JB; Pincet F
    Small; 2019 May; 15(21):e1900725. PubMed ID: 30977975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-Printed Microfluidic Devices for Enhanced Online Sampling and Direct Optical Measurements.
    Monia Kabandana GK; Jones CG; Sharifi SK; Chen C
    ACS Sens; 2020 Jul; 5(7):2044-2051. PubMed ID: 32363857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotinylated Photopolymers for 3D-Printed Unibody Lab-on-a-Chip Optical Platforms.
    Credi C; Griffini G; Levi M; Turri S
    Small; 2018 Jan; 14(1):. PubMed ID: 29141120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vat photopolymerization 3D printed microfluidic devices for organ-on-a-chip applications.
    Milton LA; Viglione MS; Ong LJY; Nordin GP; Toh YC
    Lab Chip; 2023 Aug; 23(16):3537-3560. PubMed ID: 37476860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct 3D printed biocompatible microfluidics: assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system.
    Riester O; Laufer S; Deigner HP
    J Nanobiotechnology; 2022 Dec; 20(1):540. PubMed ID: 36575530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid Printing of Fully Integrated Microfluidic Devices for Biosensing.
    Du Y; Reitemeier J; Jiang Q; Bappy MO; Bohn PW; Zhang Y
    Small; 2024 Feb; 20(5):e2304966. PubMed ID: 37752777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.