These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35133799)

  • 1. Selenide [Se(-II)] Immobilization in Anoxic, Fe(II)-Rich Environments: Coprecipitation and Behavior during Phase Transformations.
    Francisco PCM; Matsumura D; Kikuchi R; Ishidera T; Tachi Y
    Environ Sci Technol; 2022 Mar; 56(5):3011-3020. PubMed ID: 35133799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of selenite with reduced Fe and/or S species: An XRD and XAS study.
    Finck N; Dardenne K
    J Contam Hydrol; 2016 May; 188():44-51. PubMed ID: 27010738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retention and multiphase transformation of selenium oxyanions during the formation of magnetite via iron(ii) hydroxide and green rust.
    Börsig N; Scheinost AC; Shaw S; Schild D; Neumann T
    Dalton Trans; 2018 Aug; 47(32):11002-11015. PubMed ID: 30022201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selenide retention by mackinawite.
    Finck N; Dardenne K; Bosbach D; Geckeis H
    Environ Sci Technol; 2012 Sep; 46(18):10004-11. PubMed ID: 22900520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of aqueous Se(IV)/Se(VI) with FeSe/FeSe2: implication to Se redox process.
    Kang M; Ma B; Bardelli F; Chen F; Liu C; Zheng Z; Wu S; Charlet L
    J Hazard Mater; 2013 Mar; 248-249():20-8. PubMed ID: 23352903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-Water Interface Interaction of Selenium with Fe(II)-Bearing Minerals and Aqueous Fe(II) and S(-II) Ions in the Near-Field of the Radioactive Waste Disposal System.
    Matulová M; Duborská E; Matúš P; Urík M
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution and surface chemistry of the Se(IV)-Fe(0) reactions: Effect of initial solution pH.
    Xia X; Ling L; Zhang WX
    Chemosphere; 2017 Feb; 168():1597-1603. PubMed ID: 27939658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speciation of iron(II/III) at the iron-cement interface: a review.
    Wieland E; Miron GD; Ma B; Geng G; Lothenbach B
    Mater Struct; 2023; 56(2):31. PubMed ID: 36777453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of selenium incorporated in pyrite and mackinawite as determined by XAFS analyses.
    Diener A; Neumann T; Kramar U; Schild D
    J Contam Hydrol; 2012 May; 133():30-9. PubMed ID: 22484403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selenate removal by zero-valent iron in oxic condition: the role of Fe(II) and selenate removal mechanism.
    Yoon IH; Bang S; Kim KW; Kim MG; Park SY; Choi WK
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1081-90. PubMed ID: 25943509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon-14 release and speciation during corrosion of irradiated steel under radioactive waste disposal conditions.
    Guillemot T; Salazar G; Rauber M; Kunz D; Szidat S; Wieland E
    Sci Total Environ; 2022 Apr; 817():152596. PubMed ID: 34963602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Corrosion Products Deposited on 304 Stainless Steel on Reduction of Se (IV/VI) in Simulated Groundwater.
    Huang G; Li T; Zhang X; Wang L; Cui D; Yang M
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Fe(II) on the Se(IV) sorption under oxic/anoxic conditions using bentonite.
    He J; Shi Y; Yang X; Zhou W; Li Y; Liu C
    Chemosphere; 2018 Feb; 193():376-384. PubMed ID: 29149714
    [No Abstract]   [Full Text] [Related]  

  • 14. Reactivities of Fe(II) on calcite: selenium reduction.
    Chakraborty S; Bardelli F; Charlet L
    Environ Sci Technol; 2010 Feb; 44(4):1288-94. PubMed ID: 20092306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reductive removal of selenate by zero-valent iron: The roles of aqueous Fe(2+) and corrosion products, and selenate removal mechanisms.
    Tang C; Huang YH; Zeng H; Zhang Z
    Water Res; 2014 Dec; 67():166-74. PubMed ID: 25269108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of precipitation, sorption and stable of isotope on maximum release rates of radionuclides from engineered barrier system (EBS) in deep repository.
    Malekifarsani A; Skachek MA
    J Environ Radioact; 2009 Oct; 100(10):807-14. PubMed ID: 19027996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray absorption and photoelectron spectroscopy investigation of selenite reduction by FeII-bearing minerals.
    Scheinost AC; Kirsch R; Banerjee D; Fernandez-Martinez A; Zaenker H; Funke H; Charlet L
    J Contam Hydrol; 2008 Dec; 102(3-4):228-45. PubMed ID: 18976832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selenite Sorption on Hydrated CEM-V/A Cement in the Presence of Steel Corrosion Products: Redox vs Nonredox Sorption.
    Ma B; Fernandez-Martinez A; Wang K; Madé B; Hénocq P; Tisserand D; Bureau S; Charlet L
    Environ Sci Technol; 2020 Feb; 54(4):2344-2352. PubMed ID: 31971374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous selenite reduction by zero valent iron steel wool.
    Li Z; Huang D; McDonald LM
    Water Sci Technol; 2017 Feb; 75(3-4):908-915. PubMed ID: 28234291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. XANES-Based Determination of Redox Potentials Imposed by Steel Corrosion Products in Cement-Based Media.
    Ma B; Fernandez-Martinez A; Madé B; Findling N; Markelova E; Salas-Colera E; Maffeis TGG; Lewis AR; Tisserand D; Bureau S; Charlet L
    Environ Sci Technol; 2018 Oct; 52(20):11931-11940. PubMed ID: 30211548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.