These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 35133801)

  • 41. Superlattices based on van der Waals 2D materials.
    Ryu YK; Frisenda R; Castellanos-Gomez A
    Chem Commun (Camb); 2019 Sep; 55(77):11498-11510. PubMed ID: 31483427
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Controlling Exciton and Valley Dynamics in Two-Dimensional Heterostructures with Atomically Precise Interlayer Proximity.
    Zhou H; Zhao Y; Tao W; Li Y; Zhou Q; Zhu H
    ACS Nano; 2020 Apr; 14(4):4618-4625. PubMed ID: 32181635
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material.
    Zhang X; Qiao XF; Shi W; Wu JB; Jiang DS; Tan PH
    Chem Soc Rev; 2015 May; 44(9):2757-85. PubMed ID: 25679474
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New Assembly-Free Bulk Layered Inorganic Vertical Heterostructures with Infrared and Optical Bandgaps.
    Antoniuk ER; Cheon G; Krishnapriyan A; Rehn DA; Zhou Y; Reed EJ
    Nano Lett; 2019 Jan; 19(1):142-149. PubMed ID: 30525679
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neuromorphic nanoelectronic materials.
    Sangwan VK; Hersam MC
    Nat Nanotechnol; 2020 Jul; 15(7):517-528. PubMed ID: 32123381
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Atomic layer MoS
    Ye F; Lee J; Feng PX
    Nanoscale; 2017 Nov; 9(46):18208-18215. PubMed ID: 29160324
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The impact of substrate surface defects on the properties of two-dimensional van der Waals heterostructures.
    Kim SY; Kim JH; Lee S; Kwak J; Jo Y; Yoon E; Lee GD; Lee Z; Kwon SY
    Nanoscale; 2018 Oct; 10(40):19212-19219. PubMed ID: 30303224
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of the mechanical properties of van der Waals heterostructures of stanene adsorbed on graphene, hexagonal boron-nitride and silicon carbide.
    Rahman MH; Chowdhury EH; Redwan DA; Mitra S; Hong S
    Phys Chem Chem Phys; 2021 Mar; 23(9):5244-5253. PubMed ID: 33629670
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Integration of bulk materials with two-dimensional materials for physical coupling and applications.
    Bae SH; Kum H; Kong W; Kim Y; Choi C; Lee B; Lin P; Park Y; Kim J
    Nat Mater; 2019 Jun; 18(6):550-560. PubMed ID: 31114063
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Through the Lens of a Momentum Microscope: Viewing Light-Induced Quantum Phenomena in 2D Materials.
    Karni O; Esin I; Dani KM
    Adv Mater; 2023 Jul; 35(27):e2204120. PubMed ID: 35817468
    [TBL] [Abstract][Full Text] [Related]  

  • 51. All-Inorganic Perovskite Quantum Dot-Monolayer MoS
    Wu H; Si H; Zhang Z; Kang Z; Wu P; Zhou L; Zhang S; Zhang Z; Liao Q; Zhang Y
    Adv Sci (Weinh); 2018 Dec; 5(12):1801219. PubMed ID: 30581713
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 2D-materials-integrated optoelectromechanics: recent progress and future perspectives.
    Peng M; Cheng J; Zheng X; Ma J; Feng Z; Sun X
    Rep Prog Phys; 2023 Jan; 86(2):. PubMed ID: 36167057
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 3D Mesoporous van der Waals Heterostructures for Trifunctional Energy Electrocatalysis.
    Tang C; Zhong L; Zhang B; Wang HF; Zhang Q
    Adv Mater; 2018 Feb; 30(5):. PubMed ID: 29226394
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mixed-dimensional van der Waals heterostructures.
    Jariwala D; Marks TJ; Hersam MC
    Nat Mater; 2017 Feb; 16(2):170-181. PubMed ID: 27479211
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Artificial Synapse Based on van der Waals Heterostructures with Tunable Synaptic Functions for Neuromorphic Computing.
    He C; Tang J; Shang DS; Tang J; Xi Y; Wang S; Li N; Zhang Q; Lu JK; Wei Z; Wang Q; Shen C; Li J; Shen S; Shen J; Yang R; Shi D; Wu H; Wang S; Zhang G
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11945-11954. PubMed ID: 32052957
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct growth of hexagonal boron nitride on non-metallic substrates and its heterostructures with graphene.
    Juma IG; Kim G; Jariwala D; Behura SK
    iScience; 2021 Nov; 24(11):103374. PubMed ID: 34816107
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Topological superconductivity in a van der Waals heterostructure.
    Kezilebieke S; Huda MN; Vaňo V; Aapro M; Ganguli SC; Silveira OJ; Głodzik S; Foster AS; Ojanen T; Liljeroth P
    Nature; 2020 Dec; 588(7838):424-428. PubMed ID: 33328663
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Continuous Heteroepitaxy of Two-Dimensional Heterostructures Based on Layered Chalcogenides.
    Kobayashi Y; Yoshida S; Maruyama M; Mogi H; Murase K; Maniwa Y; Takeuchi O; Okada S; Shigekawa H; Miyata Y
    ACS Nano; 2019 Jul; 13(7):7527-7535. PubMed ID: 31149797
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Centimeter-Scale 2D van der Waals Vertical Heterostructures Integrated on Deformable Substrates Enabled by Gold Sacrificial Layer-Assisted Growth.
    Islam MA; Kim JH; Schropp A; Kalita H; Choudhary N; Weitzman D; Khondaker SI; Oh KH; Roy T; Chung HS; Jung Y
    Nano Lett; 2017 Oct; 17(10):6157-6165. PubMed ID: 28945439
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 2D Bi
    Wang FK; Yang SJ; Zhai TY
    iScience; 2021 Nov; 24(11):103291. PubMed ID: 34765917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.