These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 35133933)
1. Estimation of the proportion of true null hypotheses under sparse dependence: Adaptive FDR controlling in microarray data. Biswas A; Chakraborty S; Baruah VJ Stat Methods Med Res; 2022 May; 31(5):917-927. PubMed ID: 35133933 [TBL] [Abstract][Full Text] [Related]
2. Re-sampling strategy to improve the estimation of number of null hypotheses in FDR control under strong correlation structures. Lu X; Perkins DL BMC Bioinformatics; 2007 May; 8():157. PubMed ID: 17509157 [TBL] [Abstract][Full Text] [Related]
3. Effects of dependence in high-dimensional multiple testing problems. Kim KI; van de Wiel MA BMC Bioinformatics; 2008 Feb; 9():114. PubMed ID: 18298808 [TBL] [Abstract][Full Text] [Related]
4. Multiple testing with discrete data: Proportion of true null hypotheses and two adaptive FDR procedures. Chen X; Doerge RW; Heyse JF Biom J; 2018 Jul; 60(4):761-779. PubMed ID: 29748972 [TBL] [Abstract][Full Text] [Related]
5. SLIM: a sliding linear model for estimating the proportion of true null hypotheses in datasets with dependence structures. Wang HQ; Tuominen LK; Tsai CJ Bioinformatics; 2011 Jan; 27(2):225-31. PubMed ID: 21098430 [TBL] [Abstract][Full Text] [Related]
6. On correcting the overestimation of the permutation-based false discovery rate estimator. Jiao S; Zhang S Bioinformatics; 2008 Aug; 24(15):1655-61. PubMed ID: 18573796 [TBL] [Abstract][Full Text] [Related]
7. Controlling false discoveries in multidimensional directional decisions, with applications to gene expression data on ordered categories. Guo W; Sarkar SK; Peddada SD Biometrics; 2010 Jun; 66(2):485-92. PubMed ID: 19645703 [TBL] [Abstract][Full Text] [Related]
8. Bias-corrected estimators for proportion of true null hypotheses: application of adaptive FDR-controlling in segmented failure data. Biswas A; Chattopadhyay G; Chatterjee A J Appl Stat; 2022; 49(14):3591-3613. PubMed ID: 36246854 [TBL] [Abstract][Full Text] [Related]
9. Estimating the proportion of true null hypotheses and adaptive false discovery rate control in discrete paradigm. Biswas A; Chattopadhyay G Biom J; 2024 Mar; 66(2):e2200204. PubMed ID: 38356198 [TBL] [Abstract][Full Text] [Related]
10. Construction of null statistics in permutation-based multiple testing for multi-factorial microarray experiments. Gao X Bioinformatics; 2006 Jun; 22(12):1486-94. PubMed ID: 16574697 [TBL] [Abstract][Full Text] [Related]
11. Filtering for increased power for microarray data analysis. Hackstadt AJ; Hess AM BMC Bioinformatics; 2009 Jan; 10():11. PubMed ID: 19133141 [TBL] [Abstract][Full Text] [Related]
13. Empirical Bayes estimation of posterior probabilities of enrichment: a comparative study of five estimators of the local false discovery rate. Yang Z; Li Z; Bickel DR BMC Bioinformatics; 2013 Mar; 14():87. PubMed ID: 23497228 [TBL] [Abstract][Full Text] [Related]
14. Empirical Bayes screening of many p-values with applications to microarray studies. Datta S; Datta S Bioinformatics; 2005 May; 21(9):1987-94. PubMed ID: 15691856 [TBL] [Abstract][Full Text] [Related]
15. A mixture model for estimating the local false discovery rate in DNA microarray analysis. Liao JG; Lin Y; Selvanayagam ZE; Shih WJ Bioinformatics; 2004 Nov; 20(16):2694-701. PubMed ID: 15145810 [TBL] [Abstract][Full Text] [Related]
16. Control procedures and estimators of the false discovery rate and their application in low-dimensional settings: an empirical investigation. Brinster R; Köttgen A; Tayo BO; Schumacher M; Sekula P; BMC Bioinformatics; 2018 Mar; 19(1):78. PubMed ID: 29499647 [TBL] [Abstract][Full Text] [Related]
17. Post hoc power estimation in large-scale multiple testing problems. Zehetmayer S; Posch M Bioinformatics; 2010 Apr; 26(8):1050-6. PubMed ID: 20189938 [TBL] [Abstract][Full Text] [Related]
18. How accurately can we control the FDR in analyzing microarray data? Jung SH; Jang W Bioinformatics; 2006 Jul; 22(14):1730-6. PubMed ID: 16644791 [TBL] [Abstract][Full Text] [Related]
19. A classification approach for DNA methylation profiling with bisulfite next-generation sequencing data. Cheng L; Zhu Y Bioinformatics; 2014 Jan; 30(2):172-9. PubMed ID: 24273245 [TBL] [Abstract][Full Text] [Related]
20. Multivariate hierarchical Bayesian model for differential gene expression analysis in microarray experiments. Zhao H; Chan KL; Cheng LM; Yan H BMC Bioinformatics; 2008; 9 Suppl 1(Suppl 1):S9. PubMed ID: 18315862 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]