BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35134085)

  • 1. Reducing calibration time in motor imagery-based BCIs by data alignment and empirical mode decomposition.
    Xiong W; Wei Q
    PLoS One; 2022; 17(2):e0263641. PubMed ID: 35134085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.
    Siuly ; Li Y; Paul Wen P
    Comput Methods Programs Biomed; 2014 Mar; 113(3):767-80. PubMed ID: 24440135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel use of Empirical Mode Decomposition in single-trial classification of motor imagery for use in brain-computer interfaces.
    Davies SR; James CJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5610-3. PubMed ID: 24111009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying mode mixing and leakage in multivariate empirical mode decomposition and application in motor imagery-based brain-computer interface system.
    Zheng Y; Xu G
    Med Biol Eng Comput; 2019 Jun; 57(6):1297-1311. PubMed ID: 30737625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Method to Generate Artificial Frames Using the Empirical Mode Decomposition for an EEG-Based Motor Imagery BCI.
    Dinarès-Ferran J; Ortner R; Guger C; Solé-Casals J
    Front Neurosci; 2018; 12():308. PubMed ID: 29867320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intra- and inter-subject common spatial pattern for reducing calibration effort in MI-based BCI.
    Wei Q; Ding X
    IEEE Trans Neural Syst Rehabil Eng; 2023 Jan; PP():. PubMed ID: 37018725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An EEG channel selection method for motor imagery based brain-computer interface and neurofeedback using Granger causality.
    Varsehi H; Firoozabadi SMP
    Neural Netw; 2021 Jan; 133():193-206. PubMed ID: 33220643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cross-dataset adaptive domain selection transfer learning framework for motor imagery-based brain-computer interfaces.
    Jin J; Bai G; Xu R; Qin K; Sun H; Wang X; Cichocki A
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38885683
    [No Abstract]   [Full Text] [Related]  

  • 9. Dynamic time warping-based transfer learning for improving common spatial patterns in brain-computer interface.
    Azab AM; Ahmadi H; Mihaylova L; Arvaneh M
    J Neural Eng; 2020 Feb; 17(1):016061. PubMed ID: 31860902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An approach to improve the performance of subject-independent BCIs-based on motor imagery allocating subjects by gender.
    Cantillo-Negrete J; Gutierrez-Martinez J; Carino-Escobar RI; Carrillo-Mora P; Elias-Vinas D
    Biomed Eng Online; 2014 Dec; 13():158. PubMed ID: 25476924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    Med Eng Phys; 2015 Mar; 37(3):280-6. PubMed ID: 25640806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Common spatial pattern and wavelet decomposition for motor imagery EEG- fTCD brain-computer interface.
    Khalaf A; Sejdic E; Akcakaya M
    J Neurosci Methods; 2019 May; 320():98-106. PubMed ID: 30946880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A probabilistic approach for calibration time reduction in hybrid EEG-fTCD brain-computer interfaces.
    Khalaf A; Akcakaya M
    Biomed Eng Online; 2020 Apr; 19(1):23. PubMed ID: 32299441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.
    Zhang Y; Nam CS; Zhou G; Jin J; Wang X; Cichocki A
    IEEE Trans Cybern; 2019 Sep; 49(9):3322-3332. PubMed ID: 29994667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications.
    Chaudhary S; Taran S; Bajaj V; Siuly S
    Comput Methods Programs Biomed; 2020 Apr; 187():105325. PubMed ID: 31964514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncorrelated multiway discriminant analysis for motor imagery EEG classification.
    Liu Y; Zhao Q; Zhang L
    Int J Neural Syst; 2015 Jun; 25(4):1550013. PubMed ID: 25986750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges.
    Padfield N; Zabalza J; Zhao H; Masero V; Ren J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30909489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research of movement imagery EEG based on Hilbert-Huang transform and BP neural network].
    Jin H; Zhang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):249-53. PubMed ID: 23858742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective Subject Pooling Strategy to Improve Model Generalization for a Motor Imagery BCI.
    Won K; Kwon M; Ahn M; Jun SC
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weighted Transfer Learning for Improving Motor Imagery-Based Brain-Computer Interface.
    Azab AM; Mihaylova L; Ang KK; Arvaneh M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1352-1359. PubMed ID: 31217122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.