These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35134132)

  • 1. Automated extraction of genes associated with antibiotic resistance from the biomedical literature.
    Brincat A; Hofmann M
    Database (Oxford); 2022 Jan; 2022(2022):. PubMed ID: 35134132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An annotated dataset for extracting gene-melanoma relations from scientific literature.
    Zanoli R; Lavelli A; Löffler T; Perez Gonzalez NA; Rinaldi F
    J Biomed Semantics; 2022 Jan; 13(1):2. PubMed ID: 35045882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research.
    Bravo À; Piñero J; Queralt-Rosinach N; Rautschka M; Furlong LI
    BMC Bioinformatics; 2015 Feb; 16():55. PubMed ID: 25886734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KnowLife: a versatile approach for constructing a large knowledge graph for biomedical sciences.
    Ernst P; Siu A; Weikum G
    BMC Bioinformatics; 2015 May; 16():157. PubMed ID: 25971816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knowledge-based extraction of adverse drug events from biomedical text.
    Kang N; Singh B; Bui C; Afzal Z; van Mulligen EM; Kors JA
    BMC Bioinformatics; 2014 Mar; 15():64. PubMed ID: 24593054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Context and Knowledge Representations for Chemical-Disease Relation Extraction.
    Zhou H; Yang Y; Ning S; Liu Z; Lang C; Lin Y; Huang D
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):1879-1889. PubMed ID: 29994540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CoCoScore: context-aware co-occurrence scoring for text mining applications using distant supervision.
    Junge A; Jensen LJ
    Bioinformatics; 2020 Jan; 36(1):264-271. PubMed ID: 31199464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knowledge-guided convolutional networks for chemical-disease relation extraction.
    Zhou H; Lang C; Liu Z; Ning S; Lin Y; Du L
    BMC Bioinformatics; 2019 May; 20(1):260. PubMed ID: 31113357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracting microRNA-gene relations from biomedical literature using distant supervision.
    Lamurias A; Clarke LA; Couto FM
    PLoS One; 2017; 12(3):e0171929. PubMed ID: 28263989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A generalizable NLP framework for fast development of pattern-based biomedical relation extraction systems.
    Peng Y; Torii M; Wu CH; Vijay-Shanker K
    BMC Bioinformatics; 2014 Aug; 15(1):285. PubMed ID: 25149151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DUVEL: an active-learning annotated biomedical corpus for the recognition of oligogenic combinations.
    Nachtegael C; De Stefani J; Cnudde A; Lenaerts T
    Database (Oxford); 2024 May; 2024():. PubMed ID: 38805753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miRiaD: A Text Mining Tool for Detecting Associations of microRNAs with Diseases.
    Gupta S; Ross KE; Tudor CO; Wu CH; Schmidt CJ; Vijay-Shanker K
    J Biomed Semantics; 2016 Apr; 7(1):9. PubMed ID: 27216254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using distant supervised learning to identify protein subcellular localizations from full-text scientific articles.
    Zheng W; Blake C
    J Biomed Inform; 2015 Oct; 57():134-44. PubMed ID: 26220461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Text mining for precision medicine: automating disease-mutation relationship extraction from biomedical literature.
    Singhal A; Simmons M; Lu Z
    J Am Med Inform Assoc; 2016 Jul; 23(4):766-72. PubMed ID: 27121612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Knowledge Guided Attention and Graph Convolutional Networks for Chemical-Disease Relation Extraction.
    Sun Y; Wang J; Lin H; Zhang Y; Yang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):489-499. PubMed ID: 34962873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using distant supervision to augment manually annotated data for relation extraction.
    Su P; Li G; Wu C; Vijay-Shanker K
    PLoS One; 2019; 14(7):e0216913. PubMed ID: 31361753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-semantic relation extraction with attention-based external knowledge reinforcement.
    Li Z; Lian Y; Ma X; Zhang X; Li C
    BMC Bioinformatics; 2020 May; 21(1):213. PubMed ID: 32448122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Text Mining Genotype-Phenotype Relationships from Biomedical Literature for Database Curation and Precision Medicine.
    Singhal A; Simmons M; Lu Z
    PLoS Comput Biol; 2016 Nov; 12(11):e1005017. PubMed ID: 27902695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid approach toward biomedical relation extraction training corpora: combining distant supervision with crowdsourcing.
    Sousa D; Lamurias A; Couto FM
    Database (Oxford); 2020 Dec; 2020():. PubMed ID: 33258966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BioRel: towards large-scale biomedical relation extraction.
    Xing R; Luo J; Song T
    BMC Bioinformatics; 2020 Dec; 21(Suppl 16):543. PubMed ID: 33323106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.