These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35134228)

  • 41. Characterization in vitro and in vivo of the putative multigene 4-coumarate:CoA ligase network in Arabidopsis: syringyl lignin and sinapate/sinapyl alcohol derivative formation.
    Costa MA; Bedgar DL; Moinuddin SG; Kim KW; Cardenas CL; Cochrane FC; Shockey JM; Helms GL; Amakura Y; Takahashi H; Milhollan JK; Davin LB; Browse J; Lewis NG
    Phytochemistry; 2005 Sep; 66(17):2072-91. PubMed ID: 16099486
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A genomics approach to deciphering lignin biosynthesis in switchgrass.
    Shen H; Mazarei M; Hisano H; Escamilla-Trevino L; Fu C; Pu Y; Rudis MR; Tang Y; Xiao X; Jackson L; Li G; Hernandez T; Chen F; Ragauskas AJ; Stewart CN; Wang ZY; Dixon RA
    Plant Cell; 2013 Nov; 25(11):4342-61. PubMed ID: 24285795
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Elucidation of the structure and reaction mechanism of sorghum hydroxycinnamoyltransferase and its structural relationship to other coenzyme a-dependent transferases and synthases.
    Walker AM; Hayes RP; Youn B; Vermerris W; Sattler SE; Kang C
    Plant Physiol; 2013 Jun; 162(2):640-51. PubMed ID: 23624856
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A BAHD acyltransferase is expressed in the tapetum of Arabidopsis anthers and is involved in the synthesis of hydroxycinnamoyl spermidines.
    Grienenberger E; Besseau S; Geoffroy P; Debayle D; Heintz D; Lapierre C; Pollet B; Heitz T; Legrand M
    Plant J; 2009 Apr; 58(2):246-59. PubMed ID: 19077165
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of an Arabidopsis fatty alcohol:caffeoyl-Coenzyme A acyltransferase required for the synthesis of alkyl hydroxycinnamates in root waxes.
    Kosma DK; Molina I; Ohlrogge JB; Pollard M
    Plant Physiol; 2012 Sep; 160(1):237-48. PubMed ID: 22797656
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 4-Coumaroyl and caffeoyl shikimic acids inhibit 4-coumaric acid:coenzyme A ligases and modulate metabolic flux for 3-hydroxylation in monolignol biosynthesis of Populus trichocarpa.
    Lin CY; Wang JP; Li Q; Chen HC; Liu J; Loziuk P; Song J; Williams C; Muddiman DC; Sederoff RR; Chiang VL
    Mol Plant; 2015 Jan; 8(1):176-87. PubMed ID: 25578281
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comprehensive expression analyses of the ABCG subfamily reveal SvABCG17 as a potential transporter of lignin monomers in the model C4 grass Setaria viridis.
    Lima LGA; Ferreira SS; Simões MS; Cunha LXD; Fernie AR; Cesarino I
    J Plant Physiol; 2023 Jan; 280():153900. PubMed ID: 36525838
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exploiting the Substrate Promiscuity of Hydroxycinnamoyl-CoA:Shikimate Hydroxycinnamoyl Transferase to Reduce Lignin.
    Eudes A; Pereira JH; Yogiswara S; Wang G; Teixeira Benites V; Baidoo EE; Lee TS; Adams PD; Keasling JD; Loqué D
    Plant Cell Physiol; 2016 Mar; 57(3):568-79. PubMed ID: 26858288
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.).
    Chen F; Srinivasa Reddy MS; Temple S; Jackson L; Shadle G; Dixon RA
    Plant J; 2006 Oct; 48(1):113-24. PubMed ID: 16972868
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of bean hydroxycinnamoyl-CoA:tetrahydroxyhexanedioate hydroxycinnamoyl transferase (HHHT): use of transgenic alfalfa to determine acceptor substrate specificity.
    Sullivan ML
    Planta; 2017 Feb; 245(2):397-408. PubMed ID: 27807616
    [TBL] [Abstract][Full Text] [Related]  

  • 51. BAHD superfamily of acyl-CoA dependent acyltransferases in Populus and Arabidopsis: bioinformatics and gene expression.
    Yu XH; Gou JY; Liu CJ
    Plant Mol Biol; 2009 Jul; 70(4):421-42. PubMed ID: 19343509
    [TBL] [Abstract][Full Text] [Related]  

  • 52. OsCAD2 is the major CAD gene responsible for monolignol biosynthesis in rice culm.
    Hirano K; Aya K; Kondo M; Okuno A; Morinaka Y; Matsuoka M
    Plant Cell Rep; 2012 Jan; 31(1):91-101. PubMed ID: 21912859
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 4-Coumaroyl and Caffeoyl Shikimic Acids Inhibit 4-Coumaric Acid: Coenzyme A Ligases and Modulate Metabolic Flux for 3-Hydroxylation in Monolignol Biosynthesis of Populus trichocarpa.
    Lin CY; Wang JP; Li Q; Chen HC; Liu J; Loziuk P; Song J; Williams C; Muddiman DC; Sederoff RR; Chiang VL
    Mol Plant; 2014 Oct; ():. PubMed ID: 25336570
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Defining the Diverse Cell Populations Contributing to Lignification in Arabidopsis Stems.
    Smith RA; Schuetz M; Karlen SD; Bird D; Tokunaga N; Sato Y; Mansfield SD; Ralph J; Samuels AL
    Plant Physiol; 2017 Jun; 174(2):1028-1036. PubMed ID: 28416705
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Response of Sorghum Enhanced in Monolignol Biosynthesis to Stalk Rot Pathogens.
    Funnell-Harris DL; Sattler SE; O'Neill PM; Gries T; Tetreault HM; Clemente TE
    Plant Dis; 2019 Sep; 103(9):2277-2287. PubMed ID: 31215851
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Expression analysis of transporter genes for screening candidate monolignol transporters using Arabidopsis thaliana cell suspensions during tracheary element differentiation.
    Takeuchi M; Kegasa T; Watanabe A; Tamura M; Tsutsumi Y
    J Plant Res; 2018 Mar; 131(2):297-305. PubMed ID: 28921082
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase in Pinus radiata.
    Wagner A; Ralph J; Akiyama T; Flint H; Phillips L; Torr K; Nanayakkara B; Te Kiri L
    Proc Natl Acad Sci U S A; 2007 Jul; 104(28):11856-61. PubMed ID: 17609384
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transcriptional control of monolignol biosynthesis in Pinus taeda: factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism.
    Anterola AM; Jeon JH; Davin LB; Lewis NG
    J Biol Chem; 2002 May; 277(21):18272-80. PubMed ID: 11891223
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Constitutive accumulation of cis-piceid in transgenic Arabidopsis overexpressing a sorghum stilbene synthase gene.
    Yu CK; Lam CN; Springob K; Schmidt J; Chu IK; Lo C
    Plant Cell Physiol; 2006 Jul; 47(7):1017-21. PubMed ID: 16731548
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The simultaneous repression of CCR and CAD, two enzymes of the lignin biosynthetic pathway, results in sterility and dwarfism in Arabidopsis thaliana.
    Thévenin J; Pollet B; Letarnec B; Saulnier L; Gissot L; Maia-Grondard A; Lapierre C; Jouanin L
    Mol Plant; 2011 Jan; 4(1):70-82. PubMed ID: 20829305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.