These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 35134339)
1. Cleavage of viral DNA by restriction endonucleases stimulates the type II CRISPR-Cas immune response. Maguin P; Varble A; Modell JW; Marraffini LA Mol Cell; 2022 Mar; 82(5):907-919.e7. PubMed ID: 35134339 [TBL] [Abstract][Full Text] [Related]
2. Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response. Heler R; Wright AV; Vucelja M; Bikard D; Doudna JA; Marraffini LA Mol Cell; 2017 Jan; 65(1):168-175. PubMed ID: 28017588 [TBL] [Abstract][Full Text] [Related]
3. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Modell JW; Jiang W; Marraffini LA Nature; 2017 Apr; 544(7648):101-104. PubMed ID: 28355179 [TBL] [Abstract][Full Text] [Related]
4. Covalent Modifications of the Bacteriophage Genome Confer a Degree of Resistance to Bacterial CRISPR Systems. Liu Y; Dai L; Dong J; Chen C; Zhu J; Rao VB; Tao P J Virol; 2020 Nov; 94(23):. PubMed ID: 32938767 [TBL] [Abstract][Full Text] [Related]
5. Spacer Acquisition Rates Determine the Immunological Diversity of the Type II CRISPR-Cas Immune Response. Heler R; Wright AV; Vucelja M; Doudna JA; Marraffini LA Cell Host Microbe; 2019 Feb; 25(2):242-249.e3. PubMed ID: 30709780 [TBL] [Abstract][Full Text] [Related]
6. Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9. Bryson AL; Hwang Y; Sherrill-Mix S; Wu GD; Lewis JD; Black L; Clark TA; Bushman FD mBio; 2015 Jun; 6(3):e00648. PubMed ID: 26081634 [TBL] [Abstract][Full Text] [Related]
7. Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System. Hoikkala V; Ravantti J; Díez-Villaseñor C; Tiirola M; Conrad RA; McBride MJ; Moineau S; Sundberg LR mBio; 2021 Mar; 12(2):. PubMed ID: 33785624 [TBL] [Abstract][Full Text] [Related]
8. Impact of Different Target Sequences on Type III CRISPR-Cas Immunity. Maniv I; Jiang W; Bikard D; Marraffini LA J Bacteriol; 2016 Jan; 198(6):941-50. PubMed ID: 26755632 [TBL] [Abstract][Full Text] [Related]
9. Co-evolution within structured bacterial communities results in multiple expansion of CRISPR loci and enhanced immunity. Pyenson NC; Marraffini LA Elife; 2020 Mar; 9():. PubMed ID: 32223887 [TBL] [Abstract][Full Text] [Related]
10. Bacteriophage DNA glucosylation impairs target DNA binding by type I and II but not by type V CRISPR-Cas effector complexes. Vlot M; Houkes J; Lochs SJA; Swarts DC; Zheng P; Kunne T; Mohanraju P; Anders C; Jinek M; van der Oost J; Dickman MJ; Brouns SJJ Nucleic Acids Res; 2018 Jan; 46(2):873-885. PubMed ID: 29253268 [TBL] [Abstract][Full Text] [Related]
11. Broad Targeting Specificity during Bacterial Type III CRISPR-Cas Immunity Constrains Viral Escape. Pyenson NC; Gayvert K; Varble A; Elemento O; Marraffini LA Cell Host Microbe; 2017 Sep; 22(3):343-353.e3. PubMed ID: 28826839 [TBL] [Abstract][Full Text] [Related]
12. Recombination between phages and CRISPR-cas loci facilitates horizontal gene transfer in staphylococci. Varble A; Meaden S; Barrangou R; Westra ER; Marraffini LA Nat Microbiol; 2019 Jun; 4(6):956-963. PubMed ID: 30886355 [TBL] [Abstract][Full Text] [Related]
13. A functional type II-A CRISPR-Cas system from Listeria enables efficient genome editing of large non-integrating bacteriophage. Hupfeld M; Trasanidou D; Ramazzini L; Klumpp J; Loessner MJ; Kilcher S Nucleic Acids Res; 2018 Jul; 46(13):6920-6933. PubMed ID: 30053228 [TBL] [Abstract][Full Text] [Related]
14. A type III-A CRISPR-Cas system employs degradosome nucleases to ensure robust immunity. Chou-Zheng L; Hatoum-Aslan A Elife; 2019 Apr; 8():. PubMed ID: 30942690 [TBL] [Abstract][Full Text] [Related]
15. Cas9 interaction with the tracrRNA nexus modulates the repression of type II-A CRISPR-cas genes. Kim H; Marraffini LA Nucleic Acids Res; 2024 Sep; 52(17):10595-10606. PubMed ID: 38994567 [TBL] [Abstract][Full Text] [Related]
16. Different modes of spacer acquisition by the Staphylococcus epidermidis type III-A CRISPR-Cas system. Aviram N; Thornal AN; Zeevi D; Marraffini LA Nucleic Acids Res; 2022 Feb; 50(3):1661-1672. PubMed ID: 35048966 [TBL] [Abstract][Full Text] [Related]
17. Why put up with immunity when there is resistance: an excursion into the population and evolutionary dynamics of restriction-modification and CRISPR-Cas. Gurney J; Pleška M; Levin BR Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180096. PubMed ID: 30905282 [TBL] [Abstract][Full Text] [Related]
18. CRISPR-Cas Systems Optimize Their Immune Response by Specifying the Site of Spacer Integration. McGinn J; Marraffini LA Mol Cell; 2016 Nov; 64(3):616-623. PubMed ID: 27618488 [TBL] [Abstract][Full Text] [Related]
19. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance. Dupuis MÈ; Villion M; Magadán AH; Moineau S Nat Commun; 2013; 4():2087. PubMed ID: 23820428 [TBL] [Abstract][Full Text] [Related]
20. A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity. Malone LM; Warring SL; Jackson SA; Warnecke C; Gardner PP; Gumy LF; Fineran PC Nat Microbiol; 2020 Jan; 5(1):48-55. PubMed ID: 31819217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]