These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35134477)

  • 1. Comparability of in situ crude oil emulsification in phase equilibrium and under porous-media-flow conditions.
    Borji M; Kharrat A; Ott H
    J Colloid Interface Sci; 2022 Jun; 615():196-205. PubMed ID: 35134477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing in-situ emulsification in porous media during surfactant flooding: A microfluidic study.
    Zhao X; Feng Y; Liao G; Liu W
    J Colloid Interface Sci; 2020 Oct; 578():629-640. PubMed ID: 32554145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of foam-like emulsion phases in porous media flow.
    Kharrat A; Brandstätter B; Borji M; Ritter R; Arnold P; Fritz-Popovski G; Paris O; Ott H
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):1064-1073. PubMed ID: 34785454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ micro-emulsification during surfactant enhanced oil recovery: A microfluidic study.
    Zhao X; Zhan F; Liao G; Liu W; Su X; Feng Y
    J Colloid Interface Sci; 2022 Aug; 620():465-477. PubMed ID: 35447575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Pore-Level Visualization and Verification of In Situ Oil-in-Water Pickering Emulsification during Polymeric Nanogel Flooding for EOR in a Transparent Three-Dimensional Micromodel.
    Zhang Y; Geng J; Liu J; Bai B; He X; Wei M; Deng W
    Langmuir; 2021 Nov; 37(45):13353-13364. PubMed ID: 34723564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oil mobilization and solubilization in porous media by in situ emulsification.
    Alzahid YA; Mostaghimi P; Alqahtani NJ; Sun C; Lu X; Armstrong RT
    J Colloid Interface Sci; 2019 Oct; 554():554-564. PubMed ID: 31326787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging of compositional gradients during in situ emulsification using X-ray micro-tomography.
    Unsal E; Rücker M; Berg S; Bartels WB; Bonnin A
    J Colloid Interface Sci; 2019 Aug; 550():159-169. PubMed ID: 31071522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pore scale investigation of crude oil distribution and removal from homogeneous porous media during surfactant-induced remediation.
    Ghosh J; Tick GR
    J Contam Hydrol; 2013 Dec; 155():20-30. PubMed ID: 24113292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experiments and network model of flow of oil-water emulsion in porous media.
    Romero MI; Carvalho MS; Alvarado V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046305. PubMed ID: 22181259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR).
    Adil M; Lee K; Mohd Zaid H; Ahmad Latiff NR; Alnarabiji MS
    PLoS One; 2018; 13(2):e0193518. PubMed ID: 29489897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real structure micromodels based on reservoir rocks for enhanced oil recovery (EOR) applications.
    Gaol CL; Wegner J; Ganzer L
    Lab Chip; 2020 Jun; 20(12):2197-2208. PubMed ID: 32426764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental comparison of agent-enhanced flushing for the recovery of crude oil from saturated porous media.
    Booth JM; Tick GR; Akyol NH; Greenberg RR; Zhang Y
    J Contam Hydrol; 2019 Oct; 226():103504. PubMed ID: 31228772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Core Flood and Microfluidics Investigation of Nanocellulose as a Chemical Additive to Water Flooding for EOR.
    Aadland RC; Akarri S; Heggset EB; Syverud K; Torsæter O
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32630280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling Microfluidics Data with Core Flooding Experiments to Understand Sulfonated/Polymer Water Injection.
    Tahir M; Hincapie RE; Langanke N; Ganzer L; Jaeger P
    Polymers (Basel); 2020 May; 12(6):. PubMed ID: 32481627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Temperature Core Flood Investigation of Nanocellulose as a Green Additive for Enhanced Oil Recovery.
    Aadland RC; Jakobsen TD; Heggset EB; Long-Sanouiller H; Simon S; Paso KG; Syverud K; Torsæter O
    Nanomaterials (Basel); 2019 Apr; 9(5):. PubMed ID: 31035570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward Reservoir-on-a-Chip: Rapid Performance Evaluation of Enhanced Oil Recovery Surfactants for Carbonate Reservoirs Using a Calcite-Coated Micromodel.
    Yun W; Chang S; Cogswell DA; Eichmann SL; Gizzatov A; Thomas G; Al-Hazza N; Abdel-Fattah A; Wang W
    Sci Rep; 2020 Jan; 10(1):782. PubMed ID: 31964925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Microfluidic Method to Study Enhanced Oil Recovery by Low Salinity Water Flooding.
    Saadat M; Tsai PA; Ho TH; Øye G; Dudek M
    ACS Omega; 2020 Jul; 5(28):17521-17530. PubMed ID: 32715237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emulsion-based recovery of a multicomponent petroleum hydrocarbon NAPL using nonionic surfactant formulations.
    Ramsburg CA; Baniahmad P; Muller KA; Robinson AD
    J Contam Hydrol; 2023 Apr; 255():104144. PubMed ID: 36791614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-active compounds induce time-dependent and non-monotonic fluid-fluid displacement during low-salinity water flooding.
    Du Y; Xu K; Mejia L; Balhoff M
    J Colloid Interface Sci; 2023 Feb; 631(Pt A):245-259. PubMed ID: 36379083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant-Enhanced Spontaneous Emulsification Near the Crude Oil-Water Interface.
    Wu T; Firoozabadi A
    Langmuir; 2021 Apr; 37(15):4736-4743. PubMed ID: 33826353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.