BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35135203)

  • 1. Multiscale modeling of skeletal muscle to explore its passive mechanical properties and experiments verification.
    Liu F; Wang M; Ma Y
    Math Biosci Eng; 2022 Jan; 19(2):1251-1279. PubMed ID: 35135203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale modeling of skeletal muscle tissues based on analytical and numerical homogenization.
    Spyrou LA; Brisard S; Danas K
    J Mech Behav Biomed Mater; 2019 Apr; 92():97-117. PubMed ID: 30677705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A micromechanical model of skeletal muscle to explore the effects of fiber and fascicle geometry.
    Sharafi B; Blemker SS
    J Biomech; 2010 Dec; 43(16):3207-13. PubMed ID: 20846654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evaluation of fiber orientation based material properties of skeletal muscle in tension.
    Kuthe CD; Uddanwadiker RV; Ramteke A
    Mol Cell Biomech; 2014 Jun; 11(2):113-28. PubMed ID: 25831858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale modeling of passive material influences on deformation and force output of skeletal muscles.
    He X; Taneja K; Chen JS; Lee CH; Hodgson J; Malis V; Sinha U; Sinha S
    Int J Numer Method Biomed Eng; 2022 Apr; 38(4):e3571. PubMed ID: 35049153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the passive mechanical behaviour of skeletal muscle fibres: Micromechanical experiments and Bayesian hierarchical modelling.
    Böl M; Iyer R; Dittmann J; Garcés-Schröder M; Dietzel A
    Acta Biomater; 2019 Jul; 92():277-289. PubMed ID: 31077887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element modeling of passive material influence on the deformation and force output of skeletal muscle.
    Hodgson JA; Chi SW; Yang JP; Chen JS; Edgerton VR; Sinha S
    J Mech Behav Biomed Mater; 2012 May; 9():163-83. PubMed ID: 22498294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle: Modeling the mechanical behavior by taking the hierarchical microstructure into account.
    Lamsfuss J; Bargmann S
    J Mech Behav Biomed Mater; 2021 Oct; 122():104670. PubMed ID: 34274750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale analysis of Klf10's impact on the passive mechanical properties of murine skeletal muscle.
    Tatarenko Y; Li M; Pouletaut P; Kammoun M; Hawse JR; Joumaa V; Herzog W; Chatelin S; Bensamoun SF
    J Mech Behav Biomed Mater; 2024 Feb; 150():106298. PubMed ID: 38096609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale composite model of fiber-reinforced tissues with direct representation of sub-tissue properties.
    Zhou M; Bezci SE; O'Connell GD
    Biomech Model Mechanobiol; 2020 Apr; 19(2):745-759. PubMed ID: 31686304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From single muscle fiber to whole muscle mechanics: a finite element model of a muscle bundle with fast and slow fibers.
    Marcucci L; Reggiani C; Natali AN; Pavan PG
    Biomech Model Mechanobiol; 2017 Dec; 16(6):1833-1843. PubMed ID: 28584973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On multiscale tension-compression asymmetry in skeletal muscle.
    Böl M; Kohn S; Leichsenring K; Morales-Orcajo E; Ehret AE
    Acta Biomater; 2022 May; 144():210-220. PubMed ID: 35339701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multiscale four-layer finite element model to predict the effects of collagen fibers on skin behavior under tension.
    Guissouma I; Hambli R; Rekik A; Hivet A
    Proc Inst Mech Eng H; 2021 Nov; 235(11):1274-1287. PubMed ID: 34278843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibre and extracellular matrix contributions to passive forces in human skeletal muscles: An experimental based constitutive law for numerical modelling of the passive element in the classical Hill-type three element model.
    Marcucci L; Bondì M; Randazzo G; Reggiani C; Natali AN; Pavan PG
    PLoS One; 2019; 14(11):e0224232. PubMed ID: 31689322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementing a micromechanical model into a finite element code to simulate the mechanical and microstructural response of arteries.
    Bianchi D; Morin C; Badel P
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2553-2566. PubMed ID: 32607921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new model of passive muscle tissue integrating Collagen Fibers: Consequences for muscle behavior analysis.
    Yousefi AK; Nazari MA; Perrier P; Panahi MS; Payan Y
    J Mech Behav Biomed Mater; 2018 Dec; 88():29-40. PubMed ID: 30121444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel constitutive model of skeletal muscle taking into account anisotropic damage.
    Ito D; Tanaka E; Yamamoto S
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):85-93. PubMed ID: 19878905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microstructurally-based, multi-scale, continuum-mechanical model for the passive behaviour of skeletal muscle tissue.
    Bleiler C; Ponte Castañeda P; Röhrle O
    J Mech Behav Biomed Mater; 2019 Sep; 97():171-186. PubMed ID: 31125890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The need for speed - Does the force-velocity property significantly alter strain distributions within skeletal muscle?
    DiSalvo MD; Blemker SS
    J Biomech; 2024 Apr; 167():112089. PubMed ID: 38608614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A structural model of passive skeletal muscle shows two reinforcement processes in resisting deformation.
    Gindre J; Takaza M; Moerman KM; Simms CK
    J Mech Behav Biomed Mater; 2013 Jun; 22():84-94. PubMed ID: 23587721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.