These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 35135465)

  • 21. Advances in 3D printing of composite scaffolds for the repairment of bone tissue associated defects.
    Anandhapadman A; Venkateswaran A; Jayaraman H; Veerabadran Ghone N
    Biotechnol Prog; 2022 May; 38(3):e3234. PubMed ID: 35037419
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication and evaluation of 3D printed BCP scaffolds reinforced with ZrO
    Sa MW; Nguyen BB; Moriarty RA; Kamalitdinov T; Fisher JP; Kim JY
    Biotechnol Bioeng; 2018 Apr; 115(4):989-999. PubMed ID: 29240243
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrophilic surface-modified 3D printed flexible scaffolds with high ceramic particle concentrations for immunopolarization-regulation and bone regeneration.
    Li W; Xu F; Dai F; Deng T; Ai Y; Xu Z; He C; Ai F; Song L
    Biomater Sci; 2023 May; 11(11):3976-3997. PubMed ID: 37115001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling.
    Zeng H; Pathak JL; Shi Y; Ran J; Liang L; Yan Q; Wu T; Fan Q; Li M; Bai Y
    Biofabrication; 2020 Mar; 12(2):025032. PubMed ID: 32084655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Dual Effect of 3D-Printed Biological Scaffolds Composed of Diverse Biomaterials in the Treatment of Bone Tumors.
    Ma Y; Zhang B; Sun H; Liu D; Zhu Y; Zhu Q; Liu X
    Int J Nanomedicine; 2023; 18():293-305. PubMed ID: 36683596
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lattice design and 3D-printing of PEEK with Ca
    Oladapo BI; Ismail SO; Bowoto OK; Omigbodun FT; Olawumi MA; Muhammad MA
    Int J Biol Macromol; 2020 Dec; 165(Pt A):50-62. PubMed ID: 32979443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical and biological characteristics of 3D fabricated clay mineral and bioceramic composite scaffold for bone tissue applications.
    Logeshwaran A; Elsen R; Nayak S
    J Mech Behav Biomed Mater; 2023 Feb; 138():105633. PubMed ID: 36603527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces.
    Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M
    Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biocompatibility and biodegradation studies of PCL/β-TCP bone tissue scaffold fabricated by structural porogen method.
    Lu L; Zhang Q; Wootton D; Chiou R; Li D; Lu B; Lelkes P; Zhou J
    J Mater Sci Mater Med; 2012 Sep; 23(9):2217-26. PubMed ID: 22669285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Fabrication and in vivo implantation of ligament-bone composite scaffolds based on three-dimensional printing technique].
    Zhang W; He J; Li X; Liu Y; Bian W; Li D; Jin Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):314-7. PubMed ID: 24844011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterisation of bone regeneration in 3D printed ductile PCL/PEG/hydroxyapatite scaffolds with high ceramic microparticle concentrations.
    Cao C; Huang P; Prasopthum A; Parsons AJ; Ai F; Yang J
    Biomater Sci; 2021 Dec; 10(1):138-152. PubMed ID: 34806738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A simple and fast method for screening production of polymer-ceramic filaments for bone implant printing using commercial fused deposition modelling 3D printers.
    Podgórski R; Wojasiński M; Trepkowska-Mejer E; Ciach T
    Biomater Adv; 2023 Mar; 146():213317. PubMed ID: 36738523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Review on current limits and potentialities of technologies for biomedical ceramic scaffolds production.
    Marques A; Miranda G; Silva F; Pinto P; Carvalho Ó
    J Biomed Mater Res B Appl Biomater; 2021 Mar; 109(3):377-393. PubMed ID: 32924277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix.
    Nyberg E; Rindone A; Dorafshar A; Grayson WL
    Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of bone scaffolds with calcium phosphate and its derivatives by 3D printing: A review.
    Darghiasi SF; Farazin A; Ghazali HS
    J Mech Behav Biomed Mater; 2024 Mar; 151():106391. PubMed ID: 38211501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering biomaterials to 3D-print scaffolds for bone regeneration: practical and theoretical consideration.
    Ansari MAA; Golebiowska AA; Dash M; Kumar P; Jain PK; Nukavarapu SP; Ramakrishna S; Nanda HS
    Biomater Sci; 2022 May; 10(11):2789-2816. PubMed ID: 35510605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.