These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35135850)

  • 1. Haemodynamic changes with varying chest compression rates in asphyxiated piglets.
    Bruckner M; Neset M; O'Reilly M; Lee TF; Cheung PY; Schmölzer GM
    Arch Dis Child Fetal Neonatal Ed; 2023 Mar; 108(2):200-203. PubMed ID: 35135850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of hemodynamic effects of chest compression delivered via machine or human in asphyxiated piglets.
    O'Reilly M; Lee TF; Cheung PY; Schmölzer GM
    Pediatr Res; 2024 Jan; 95(1):156-159. PubMed ID: 37741932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of varying chest compression depths on carotid blood flow and blood pressure in asphyxiated piglets.
    Bruckner M; O'Reilly M; Lee TF; Neset M; Cheung PY; Schmölzer GM
    Arch Dis Child Fetal Neonatal Ed; 2021 Sep; 106(5):553-556. PubMed ID: 33541920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3:1 compression to ventilation ratio versus continuous chest compression with asynchronous ventilation in a porcine model of neonatal resuscitation.
    Schmölzer GM; O'Reilly M; Labossiere J; Lee TF; Cowan S; Nicoll J; Bigam DL; Cheung PY
    Resuscitation; 2014 Feb; 85(2):270-5. PubMed ID: 24161768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chest compressions superimposed with sustained inflations during cardiopulmonary resuscitation in asphyxiated pediatric piglets.
    Morin CMD; Cheung PY; Lee TF; O'Reilly M; Schmölzer GM
    Pediatr Res; 2024 Mar; 95(4):988-995. PubMed ID: 36932182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiopulmonary resuscitation with chest compressions during sustained inflations: a new technique of neonatal resuscitation that improves recovery and survival in a neonatal porcine model.
    Schmölzer GM; O'Reilly M; Labossiere J; Lee TF; Cowan S; Qin S; Bigam DL; Cheung PY
    Circulation; 2013 Dec; 128(23):2495-503. PubMed ID: 24088527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of different durations of sustained inflation during cardiopulmonary resuscitation on return of spontaneous circulation and hemodynamic recovery in severely asphyxiated piglets.
    Mustofa J; Cheung PY; Patel S; Lee TF; Lu M; Pasquin MP; OʼReilly M; Schmölzer GM
    Resuscitation; 2018 Aug; 129():82-89. PubMed ID: 29928955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The SURV1VE trial-sustained inflation and chest compression versus 3:1 chest compression-to-ventilation ratio during cardiopulmonary resuscitation of asphyxiated newborns: study protocol for a cluster randomized controlled trial.
    Schmölzer GM; Pichler G; Solevåg AL; Fray C; van Os S; Cheung PY;
    Trials; 2019 Feb; 20(1):139. PubMed ID: 30782199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustained Inflation During Chest Compression: A New Technique of Pediatric Cardiopulmonary Resuscitation That Improves Recovery and Survival in a Pediatric Porcine Model.
    Schmölzer GM; Patel SD; Monacelli S; Kim SY; Shim GH; Lee TF; O'Reilly M; Cheung PY
    J Am Heart Assoc; 2021 Aug; 10(15):e019136. PubMed ID: 34284596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Return of spontaneous Circulation Is Not Affected by Different Chest Compression Rates Superimposed with Sustained Inflations during Cardiopulmonary Resuscitation in Newborn Piglets.
    Li ES; Cheung PY; Lee TF; Lu M; O'Reilly M; Schmölzer GM
    PLoS One; 2016; 11(6):e0157249. PubMed ID: 27304210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myocardial perfusion and oxidative stress after 21% vs. 100% oxygen ventilation and uninterrupted chest compressions in severely asphyxiated piglets.
    Solevåg AL; Schmölzer GM; O'Reilly M; Lu M; Lee TF; Hornberger LK; Nakstad B; Cheung PY
    Resuscitation; 2016 Sep; 106():7-13. PubMed ID: 27344929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asynchronous ventilation at 120 compared with 90 or 100 compressions per minute improves haemodynamic recovery in asphyxiated newborn piglets.
    Patel S; Cheung PY; Lee TF; Pasquin MP; Lu M; O'Reilly M; Schmölzer GM
    Arch Dis Child Fetal Neonatal Ed; 2020 Jul; 105(4):357-363. PubMed ID: 31123054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Different Respiratory Modes on Return of Spontaneous Circulation in a Newborn Piglet Model of Hypoxic Cardiac Arrest.
    Mendler MR; Weber C; Hassan MA; Huang L; Waitz M; Mayer B; Hummler HD
    Neonatology; 2016; 109(1):22-30. PubMed ID: 26460587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chest Compressions during Sustained Inflations Improve Recovery When Compared to a 3:1 Compression:Ventilation Ratio during Cardiopulmonary Resuscitation in a Neonatal Porcine Model of Asphyxia.
    Li ES; Görens I; Cheung PY; Lee TF; Lu M; O'Reilly M; Schmölzer GM
    Neonatology; 2017; 112(4):337-346. PubMed ID: 28768280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chest compression during sustained inflation versus 3:1 chest compression:ventilation ratio during neonatal cardiopulmonary resuscitation: a randomised feasibility trial.
    Schmölzer GM; O Reilly M; Fray C; van Os S; Cheung PY
    Arch Dis Child Fetal Neonatal Ed; 2018 Sep; 103(5):F455-F460. PubMed ID: 28988159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tidal Volume Delivery and Endotracheal Tube Leak during Cardiopulmonary Resuscitation in Intubated Newborn Piglets with Hypoxic Cardiac Arrest Exposed to Different Modes of Ventilatory Support.
    Mendler MR; Weber C; Hassan MA; Huang L; Mayer B; Hummler HD
    Neonatology; 2017; 111(2):100-106. PubMed ID: 27643857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chest Compression Rates of 90/min versus 180/min during Neonatal Cardiopulmonary Resuscitation: A Randomized Controlled Animal Trial.
    Bruckner M; Neset M; Garcia-Hidalgo C; Lee TF; O'Reilly M; Cheung PY; Schmölzer GM
    Children (Basel); 2022 Nov; 9(12):. PubMed ID: 36553282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustained inflation with 21% versus 100% oxygen during cardiopulmonary resuscitation of asphyxiated newborn piglets - A randomized controlled animal study.
    Hidalgo CG; Solevag AL; Kim SY; Shim GH; Cheung PY; Lee TF; O'Reilly M; Schmölzer GM
    Resuscitation; 2020 Oct; 155():39-47. PubMed ID: 32712173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of sustained inflation pressure during neonatal cardiopulmonary resuscitation of asphyxiated piglets.
    Shim GH; Kim SY; Cheung PY; Lee TF; O'Reilly M; Schmölzer GM
    PLoS One; 2020; 15(6):e0228693. PubMed ID: 32574159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chest compression rates of 60/min versus 90/min during neonatal cardiopulmonary resuscitation: a randomized controlled animal trial.
    Bruckner M; O'Reilly M; Lee TF; Cheung PY; Schmölzer GM
    Front Pediatr; 2023; 11():1214513. PubMed ID: 37664554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.