These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35135850)

  • 21. Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest.
    Berg RA; Sanders AB; Kern KB; Hilwig RW; Heidenreich JW; Porter ME; Ewy GA
    Circulation; 2001 Nov; 104(20):2465-70. PubMed ID: 11705826
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulated mouth-to-mouth ventilation and chest compressions (bystander cardiopulmonary resuscitation) improves outcome in a swine model of prehospital pediatric asphyxial cardiac arrest.
    Berg RA; Hilwig RW; Kern KB; Babar I; Ewy GA
    Crit Care Med; 1999 Sep; 27(9):1893-9. PubMed ID: 10507615
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of compression waveform and resuscitation duration on blood flow and pressure in swine: One waveform does not optimally serve.
    Lampe JW; Yin T; Bratinov G; Kaufman CL; Berg RA; Venema A; Becker LB
    Resuscitation; 2018 Oct; 131():55-62. PubMed ID: 30092277
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Four Different Finger Positions and Their Effects on Hemodynamic Changes during Chest Compression in Asphyxiated Neonatal Piglets.
    Bruckner M; Neset M; O'Reilly M; Lee TF; Cheung PY; Schmölzer GM
    Children (Basel); 2023 Feb; 10(2):. PubMed ID: 36832412
    [No Abstract]   [Full Text] [Related]  

  • 25. Different Techniques of Respiratory Support Do Not Significantly Affect Gas Exchange during Cardiopulmonary Resuscitation in a Newborn Piglet Model.
    Mendler MR; Maurer M; Hassan MA; Huang L; Waitz M; Mayer B; Hummler HD
    Neonatology; 2015; 108(1):73-80. PubMed ID: 26044192
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pilot Study to Compare the Use of End-Tidal Carbon Dioxide-Guided and Diastolic Blood Pressure-Guided Chest Compression Delivery in a Swine Model of Neonatal Asphyxial Cardiac Arrest.
    O'Brien CE; Reyes M; Santos PT; Heitmiller SE; Kulikowicz E; Kudchadkar SR; Lee JK; Hunt EA; Koehler RC; Shaffner DH
    J Am Heart Assoc; 2018 Oct; 7(19):e009728. PubMed ID: 30371318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous chest compressions with asynchronous ventilations increase carotid blood flow in the perinatal asphyxiated lamb model.
    Vali P; Lesneski A; Hardie M; Alhassen Z; Chen P; Joudi H; Sankaran D; Lakshminrusimha S
    Pediatr Res; 2021 Oct; 90(4):752-758. PubMed ID: 33469187
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of optimal chest compression depth during neonatal cardiopulmonary resuscitation: a randomised controlled animal trial.
    Bruckner M; Kim SY; Shim GH; Neset M; Garcia-Hidalgo C; Lee TF; O'Reilly M; Cheung PY; Schmölzer GM
    Arch Dis Child Fetal Neonatal Ed; 2022 May; 107(3):262-268. PubMed ID: 34330756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Minimal interruption of cardiopulmonary resuscitation for a single shock as mandated by automated external defibrillations does not compromise outcomes in a porcine model of cardiac arrest and resuscitation.
    Ristagno G; Tang W; Russell JK; Jorgenson D; Wang H; Sun S; Weil MH
    Crit Care Med; 2008 Nov; 36(11):3048-53. PubMed ID: 18824916
    [TBL] [Abstract][Full Text] [Related]  

  • 30. End-Tidal CO2-Guided Chest Compression Delivery Improves Survival in a Neonatal Asphyxial Cardiac Arrest Model.
    Hamrick JT; Hamrick JL; Bhalala U; Armstrong JS; Lee JH; Kulikowicz E; Lee JK; Kudchadkar SR; Koehler RC; Hunt EA; Shaffner DH
    Pediatr Crit Care Med; 2017 Nov; 18(11):e575-e584. PubMed ID: 28817508
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Association between chest compression rates and clinical outcomes following in-hospital cardiac arrest at an academic tertiary hospital.
    Kilgannon JH; Kirchhoff M; Pierce L; Aunchman N; Trzeciak S; Roberts BW
    Resuscitation; 2017 Jan; 110():154-161. PubMed ID: 27666168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leaning during chest compressions impairs cardiac output and left ventricular myocardial blood flow in piglet cardiac arrest.
    Zuercher M; Hilwig RW; Ranger-Moore J; Nysaether J; Nadkarni VM; Berg MD; Kern KB; Sutton R; Berg RA
    Crit Care Med; 2010 Apr; 38(4):1141-6. PubMed ID: 20081529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chest compressions versus ventilation plus chest compressions in a pediatric asphyxial cardiac arrest animal model.
    Iglesias JM; López-Herce J; Urbano J; Solana MJ; Mencía S; Del Castillo J
    Intensive Care Med; 2010 Apr; 36(4):712-6. PubMed ID: 20148320
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relationship Between Left Ventricle Position and Haemodynamic Parameters During Cardiopulmonary Resuscitation in a Pig Model.
    Jung YH; Jeung KW; Lee DH; Jeong YW; Lee SM; Lee BK; Jeong IS; Lee SK; Choi J
    Heart Lung Circ; 2018 Dec; 27(12):1489-1497. PubMed ID: 29056259
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of epinephrine on hemodynamic changes during cardiopulmonary resuscitation in a neonatal piglet model.
    Wagner M; Cheung PY; Li ES; Lee TF; Lu M; O'Reilly M; Olischar M; Schmölzer GM
    Pediatr Res; 2018 Apr; 83(4):897-903. PubMed ID: 29244793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impacts of chest compression cycle length and real-time feedback with a CPRmeter® on chest compression quality in out-of-hospital cardiac arrest: study protocol for a multicenter randomized controlled factorial plan trial.
    Buléon C; Parienti JJ; Morilland-Lecoq E; Halbout L; Cesaréo E; Dubien PY; Jardel B; Boyer C; Husson K; Andriamirado F; Benet X; Morel-Marechal E; Aubrion A; Muntean C; Dupire E; Roupie E; Hubert H; Vilhelm C; Gueugniaud PY;
    Trials; 2020 Jul; 21(1):627. PubMed ID: 32641090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Feasibility of Biosignal-guided Chest Compression During Cardiopulmonary Resuscitation: A Proof of Concept.
    Sundermann ML; Salcido DD; Koller AC; Menegazzi JJ
    Acad Emerg Med; 2016 Jan; 23(1):93-7. PubMed ID: 26720293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A review of approaches to optimise chest compressions in the resuscitation of asphyxiated newborns.
    Solevåg AL; Cheung PY; O'Reilly M; Schmölzer GM
    Arch Dis Child Fetal Neonatal Ed; 2016 May; 101(3):F272-6. PubMed ID: 26627554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Which position should we take during newborn resuscitation? A prospective, randomised, multicentre simulation trial.
    Smereka J; Kaminska H; Wieczorek W; Dąbrowski M; Ładny JR; Ruetzler K; Szarpak Ł; Robak O; Frass M
    Kardiol Pol; 2018; 76(6):980-986. PubMed ID: 29350383
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ventilation with 18, 21, or 100% Oxygen during Cardiopulmonary Resuscitation of Asphyxiated Piglets: A Randomized Controlled Animal Trial.
    Solevåg AL; Garcia-Hidalgo C; Cheung PY; Lee TF; O'Reilly M; Schmölzer GM
    Neonatology; 2020; 117(1):102-110. PubMed ID: 31896112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.