These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Structural basis of trehalose recognition by the mycobacterial LpqY-SugABC transporter. Furze CM; Delso I; Casal E; Guy CS; Seddon C; Brown CM; Parker HL; Radhakrishnan A; Pacheco-Gomez R; Stansfeld PJ; Angulo J; Cameron AD; Fullam E J Biol Chem; 2021; 296():100307. PubMed ID: 33476646 [TBL] [Abstract][Full Text] [Related]
5. PE/PPE proteins mediate nutrient transport across the outer membrane of Wang Q; Boshoff HIM; Harrison JR; Ray PC; Green SR; Wyatt PG; Barry CE Science; 2020 Mar; 367(6482):1147-1151. PubMed ID: 32139546 [No Abstract] [Full Text] [Related]
6. PPE51 Is Involved in the Uptake of Disaccharides by Korycka-Machała M; Pawełczyk J; Borówka P; Dziadek B; Brzostek A; Kawka M; Bekier A; Rykowski S; Olejniczak AB; Strapagiel D; Witczak Z; Dziadek J Cells; 2020 Mar; 9(3):. PubMed ID: 32138343 [TBL] [Abstract][Full Text] [Related]
7. Structural analysis of LpqY, a substrate-binding protein from the SugABC transporter of Mycobacterium tuberculosis, provides insights into its trehalose specificity. Sharma D; Singh M; Kaur P; Das U Acta Crystallogr D Struct Biol; 2022 Jul; 78(Pt 7):835-845. PubMed ID: 35775983 [TBL] [Abstract][Full Text] [Related]
8. The trehalose-specific transporter LpqY-SugABC is required for antimicrobial and anti-biofilm activity of trehalose analogues in Mycobacterium smegmatis. Wolber JM; Urbanek BL; Meints LM; Piligian BF; Lopez-Casillas IC; Zochowski KM; Woodruff PJ; Swarts BM Carbohydr Res; 2017 Oct; 450():60-66. PubMed ID: 28917089 [TBL] [Abstract][Full Text] [Related]
9. Molecular recognition of trehalose and trehalose analogues by Liang J; Liu F; Xu P; Shangguan W; Hu T; Wang S; Yang X; Xiong Z; Yang X; Guddat LW; Yu B; Rao Z; Zhang B Proc Natl Acad Sci U S A; 2023 Aug; 120(35):e2307625120. PubMed ID: 37603751 [TBL] [Abstract][Full Text] [Related]
10. A Bifunctional Chemical Reporter for in Situ Analysis of Cell Envelope Glycan Recycling in Mycobacteria. Pohane AA; Moore DJ; Lepori I; Gordon RA; Nathan TO; Gepford DM; Kavunja HW; Swarts BM; Siegrist MS ACS Infect Dis; 2022 Nov; 8(11):2223-2231. PubMed ID: 36288262 [TBL] [Abstract][Full Text] [Related]
11. Engineering the Mycomembrane of Live Mycobacteria with an Expanded Set of Trehalose Monomycolate Analogues. Fiolek TJ; Banahene N; Kavunja HW; Holmes NJ; Rylski AK; Pohane AA; Siegrist MS; Swarts BM Chembiochem; 2019 May; 20(10):1282-1291. PubMed ID: 30589191 [TBL] [Abstract][Full Text] [Related]
12. Asymmetric trehalose analogues to probe disaccharide processing pathways in mycobacteria. Parker HL; Tomás RMF; Furze CM; Guy CS; Fullam E Org Biomol Chem; 2020 May; 18(18):3607-3612. PubMed ID: 32350493 [TBL] [Abstract][Full Text] [Related]
13. Biochemical and biophysical characterization of nucleotide binding domain of Trehalose transporter from Mycobacterium tuberculosis. Sabharwal N; Varshney K; Rath PP; Gourinath S; Das U Int J Biol Macromol; 2020 Jun; 152():109-116. PubMed ID: 32092417 [TBL] [Abstract][Full Text] [Related]
14. MtrP, a putative methyltransferase in Corynebacteria, is required for optimal membrane transport of trehalose mycolates. Rainczuk AK; Klatt S; Yamaryo-Botté Y; Brammananth R; McConville MJ; Coppel RL; Crellin PK J Biol Chem; 2020 May; 295(18):6108-6119. PubMed ID: 32217691 [TBL] [Abstract][Full Text] [Related]