These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 35137181)

  • 1. Evolutionary rewiring of regulatory networks contributes to phenotypic differences between human and mouse orthologous genes.
    Ha D; Kim D; Kim I; Oh Y; Kong J; Han SK; Kim S
    Nucleic Acids Res; 2022 Feb; 50(4):1849-1863. PubMed ID: 35137181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergence of Noncoding Regulatory Elements Explains Gene-Phenotype Differences between Human and Mouse Orthologous Genes.
    Han SK; Kim D; Lee H; Kim I; Kim S
    Mol Biol Evol; 2018 Jul; 35(7):1653-1667. PubMed ID: 29697819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary re-wiring of p63 and the epigenomic regulatory landscape in keratinocytes and its potential implications on species-specific gene expression and phenotypes.
    Sethi I; Gluck C; Zhou H; Buck MJ; Sinha S
    Nucleic Acids Res; 2017 Aug; 45(14):8208-8224. PubMed ID: 28505376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pervasive variation of transcription factor orthologs contributes to regulatory network evolution.
    Nadimpalli S; Persikov AV; Singh M
    PLoS Genet; 2015 Mar; 11(3):e1005011. PubMed ID: 25748510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of function and interaction of transcription factors in nematodes: extensive conservation of orthology coupled to rapid sequence evolution.
    Haerty W; Artieri C; Khezri N; Singh RS; Gupta BP
    BMC Genomics; 2008 Aug; 9():399. PubMed ID: 18752680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of miRNA-Binding Sites and Regulatory Networks in Cichlids.
    Mehta TK; Penso-Dolfin L; Nash W; Roy S; Di-Palma F; Haerty W
    Mol Biol Evol; 2022 Jul; 39(7):. PubMed ID: 35748824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved and species-specific transcription factor co-binding patterns drive divergent gene regulation in human and mouse.
    Diehl AG; Boyle AP
    Nucleic Acids Res; 2018 Feb; 46(4):1878-1894. PubMed ID: 29361190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Species-Specific Changes in a Primate Transcription Factor Network Provide Insights into the Molecular Evolution of the Primate Prefrontal Cortex.
    Berto S; Nowick K
    Genome Biol Evol; 2018 Aug; 10(8):2023-2036. PubMed ID: 30059966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TFforge utilizes large-scale binding site divergence to identify transcriptional regulators involved in phenotypic differences.
    Langer BE; Hiller M
    Nucleic Acids Res; 2019 Feb; 47(4):e19. PubMed ID: 30496469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory network structure as a dominant determinant of transcription factor evolutionary rate.
    Coulombe-Huntington J; Xia Y
    PLoS Comput Biol; 2012; 8(10):e1002734. PubMed ID: 23093926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lineage-specific transcription factors and the evolution of gene regulatory networks.
    Nowick K; Stubbs L
    Brief Funct Genomics; 2010 Jan; 9(1):65-78. PubMed ID: 20081217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary innovation through transcription factor rewiring in microbes is shaped by levels of transcription factor activity, expression, and existing connectivity.
    Shepherd MJ; Pierce AP; Taylor TB
    PLoS Biol; 2023 Oct; 21(10):e3002348. PubMed ID: 37871011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global similarity and local divergence in human and mouse gene co-expression networks.
    Tsaparas P; Mariño-Ramírez L; Bodenreider O; Koonin EV; Jordan IK
    BMC Evol Biol; 2006 Sep; 6():70. PubMed ID: 16968540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plastic Rewiring of Sef1 Transcriptional Networks and the Potential of Nonfunctional Transcription Factor Binding in Facilitating Adaptive Evolution.
    Hsu PC; Lu TC; Hung PH; Jhou YT; Amine AAA; Liao CW; Leu JY
    Mol Biol Evol; 2021 Oct; 38(11):4732-4747. PubMed ID: 34175931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of reduced co-activator dependence led to target expansion of a starvation response pathway.
    He BZ; Zhou X; O'Shea EK
    Elife; 2017 May; 6():. PubMed ID: 28485712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Transcription Networks Evolve and Produce Biological Novelty.
    Nocedal I; Johnson AD
    Cold Spring Harb Symp Quant Biol; 2015; 80():265-74. PubMed ID: 26657905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A functional selection model explains evolutionary robustness despite plasticity in regulatory networks.
    Habib N; Wapinski I; Margalit H; Regev A; Friedman N
    Mol Syst Biol; 2012; 8():619. PubMed ID: 23089682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of transcriptional regulatory circuits in bacteria.
    Perez JC; Groisman EA
    Cell; 2009 Jul; 138(2):233-44. PubMed ID: 19632175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative transcriptomics of primary cells in vertebrates.
    Alam T; Agrawal S; Severin J; Young RS; Andersson R; Arner E; Hasegawa A; Lizio M; Ramilowski JA; Abugessaisa I; Ishizu Y; Noma S; Tarui H; Taylor MS; Lassmann T; Itoh M; Kasukawa T; Kawaji H; Marchionni L; Sheng G; R R Forrest A; Khachigian LM; Hayashizaki Y; Carninci P; de Hoon MJL
    Genome Res; 2020 Jul; 30(7):951-961. PubMed ID: 32718981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the Transcriptional Regulatory Network Correlates with Regulatory Divergence in Drosophila.
    Yang B; Wittkopp PJ
    Mol Biol Evol; 2017 Jun; 34(6):1352-1362. PubMed ID: 28333240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.